cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001068 a(n) = floor(5*n/4), numbers that are congruent to {0, 1, 2, 3} mod 5.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88
Offset: 0

Views

Author

Keywords

Comments

From M. F. Hasler, Oct 21 2008: (Start)
Also, for n>0, the 4th term (after [0,n,3n]) in the continued fraction expansion of arctan(1/n). (Observation by V. Reshetnikov)
Proof:
arctan(1/n) = (1/n) / (1 + (1/n)^2/( 3 + (2/n)^2/( 5 + (3/n)^2/( 7 + ...)...)
= 1 / ( n + 1/( 3n + 4/( 5n + 9/( 7n + 25/(...)...)
= 1 / ( n + 1/( 3n + 1/( 5n/4 + (9/4)/( 7n + 25/(...)...),
and the term added to 5n/4, (9/4)/(7n+...) = (1/4)*9/(7n+...) is less than 1/4 for all n>=2. (End)

Crossrefs

Programs

Formula

contfrac( arctan( 1/n )) = 0 + 1/( n + 1/( 3n + 1/( a(n) + 1/(...)))). - M. F. Hasler, Oct 21 2008
a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=2 and b(k)=5*2^(k-2) for k>1. - Philippe Deléham, Oct 17 2011.
From Bruno Berselli, Oct 17 2011: (Start)
G.f.: x*(1+x+x^2+2*x^3)/((1+x)*(1-x)^2*(1+x^2)).
a(n) = (10*n+2*(-1)^((n-1)n/2)+(-1)^n-3)/8.
a(-n) = -A047203(n+1). (End)
From Wesley Ivan Hurt, Sep 17 2015: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>4.
a(n) = n + floor(n/4). (End)
a(n) = n + A002265(n). - Robert Israel, Sep 17 2015
E.g.f.: (sin(x) + cos(x) + (5*x - 2)*sinh(x) + (5*x - 1)*cosh(x))/4. - Ilya Gutkovskiy, May 06 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = log(5)/4 + sqrt(5)*log(phi)/10 + sqrt(5-2*sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 10 2021

Extensions

More terms from James Sellers, Sep 19 2000

A110258 Denominators in the coefficients that form the odd-indexed partial quotients of the continued fraction representation of the inverse tangent of 1/x.

Original entry on oeis.org

1, 4, 64, 256, 16384, 65536, 1048576, 4194304, 1073741824, 4294967296, 68719476736, 274877906944, 17592186044416, 70368744177664, 1125899906842624, 4503599627370496, 4611686018427387904
Offset: 1

Views

Author

Paul D. Hanna, Jul 18 2005

Keywords

Comments

Limit A110257(n)/a(n) = limit A110255(2*n-1)/A110256(2*n-1) = 4/Pi.
Apart from offset, identical to A056982.

Examples

			arctan(1/x) = 1/x - 1/(3*x^3) + 1/(5*x^5) - 1/(7*x^7) +-...
= [0; x, 3*x, 5/4*x, 28/9*x, 81/64*x, 704/225*x, 325/256*x,
768/245*x, 20825/16384*x, 311296/99225*x, 83349/65536*x,
1507328/480249*x, 1334025/1048576*x, 3145728/1002001*x,...]
= 1/(x + 1/(3*x + 1/(5/4*x + 1/(28/9*x + 1/(81/64*x +...))))).
The coefficients of x in the even-indexed partial quotients converge to Pi:
{3, 28/9, 704/225, 768/245, 311296/99225, ...}.
The coefficients of x in the odd-indexed partial quotients converge to 4/Pi:
{1, 5/4, 81/64, 325/256, 20825/16384, ...}.
		

Crossrefs

See A056982 for another version of this sequence.
Cf. A110257 (numerators), A110255/A110256 (continued fraction), A110259/A110260.

Programs

  • PARI
    {a(n)=denominator(subst((contfrac( sum(k=0,2*n+1,(-1)^k/x^(2*k+1)/(2*k+1)),2*n+2))[2*n],x,1))}
    
  • PARI
    a(n)=4^(2*n-vecsum(binary(n-1))-2) \\ Charles R Greathouse IV, Apr 09 2012

Formula

a(n) = 4^A005187(n-1).
a(n) = A110256(2*n-1).

Extensions

Edited by N. J. A. Sloane, Jun 05 2007

A110255 Numerators in the fractional coefficients that form the partial quotients of the continued fraction representation of the inverse tangent of 1/x.

Original entry on oeis.org

1, 3, 5, 28, 81, 704, 325, 768, 20825, 311296, 83349, 1507328, 1334025, 3145728, 5337189, 130023424, 1366504425, 7516192768, 5466528925, 12884901888, 87470372561, 2954937499648, 349899121845, 12919261626368, 22394407746529
Offset: 1

Views

Author

Paul D. Hanna, Jul 18 2005

Keywords

Comments

Limit a(2*n-1)/A110256(2*n-1) = limit A110257(n)/A110258(n) = 4/Pi.
Limit a(2*n)/A110256(2*n) = limit A110259(n)/A110260(n) = Pi.

Examples

			arctan(1/x) = 1/x - 1/(3*x^3) + 1/(5*x^5) - 1/(7*x^7) +-...
= [0; x, 3*x, 5/4*x, 28/9*x, 81/64*x, 704/225*x, 325/256*x,
768/245*x, 20825/16384*x, 311296/99225*x, 83349/65536*x,
1507328/480249*x, 1334025/1048576*x, 3145728/1002001*x,...]
= 1/(x + 1/(3*x + 1/(5/4*x + 1/(28/9*x + 1/(81/64*x +...))))).
The coefficients of x in the even-indexed partial quotients converge to Pi:
{3, 28/9, 704/225, 768/245, 311296/99225, ...}.
The coefficients of x in the odd-indexed partial quotients converge to 4/Pi:
{1, 5/4, 81/64, 325/256, 20825/16384, ...}.
		

Crossrefs

Cf. A110256 (denominators), A110257/A110258 (odd-indexed), A110259/A110260 (even-indexed).

Programs

  • PARI
    {a(n)=numerator(subst((contfrac( sum(k=0,n,(-1)^k/x^(2*k+1)/(2*k+1)),n+1))[n+1],x,1))}

A110256 Denominators in the fractional coefficients that form the partial quotients of the continued fraction representation of the inverse tangent of 1/x.

Original entry on oeis.org

1, 1, 4, 9, 64, 225, 256, 245, 16384, 99225, 65536, 480249, 1048576, 1002001, 4194304, 41409225, 1073741824, 2393453205, 4294967296, 4102737925, 68719476736, 940839860961, 274877906944, 4113258565689, 17592186044416
Offset: 1

Views

Author

Paul D. Hanna, Jul 18 2005

Keywords

Comments

Limit A110255(2*n-1)/a(2*n-1) = limit A110257(n)/A110258(n) = 4/Pi.
Limit A110255(2*n)/a(2*n) = limit A110259(n)/A110260(n) = Pi.

Examples

			arctan(1/x) = 1/x - 1/(3*x^3) + 1/(5*x^5) - 1/(7*x^7) +-...
= [0; x, 3*x, 5/4*x, 28/9*x, 81/64*x, 704/225*x, 325/256*x,
768/245*x, 20825/16384*x, 311296/99225*x, 83349/65536*x,
1507328/480249*x, 1334025/1048576*x, 3145728/1002001*x,...]
= 1/(x + 1/(3*x + 1/(5/4*x + 1/(28/9*x + 1/(81/64*x +...))))).
The coefficients of x in the even-indexed partial quotients converge to Pi:
{3, 28/9, 704/225, 768/245, 311296/99225, ...}.
The coefficients of x in the odd-indexed partial quotients converge to 4/Pi:
{1, 5/4, 81/64, 325/256, 20825/16384, ...}.
		

Crossrefs

Cf. A110255 (numerators), A110257/A110258 (odd-indexed), A110259/A110260 (even-indexed).
Cf. A095175. [From R. J. Mathar, Aug 18 2008]

Programs

  • PARI
    {a(n)=denominator(subst((contfrac( sum(k=0,n,(-1)^k/x^(2*k+1)/(2*k+1)),n+1))[n+1],x,1))}

A110257 Numerators in the coefficients that form the odd-indexed partial quotients of the continued fraction representation of the inverse tangent of 1/x.

Original entry on oeis.org

1, 5, 81, 325, 20825, 83349, 1334025, 5337189, 1366504425, 5466528925, 87470372561, 349899121845, 22394407746529, 89580335298125, 1433319858545625, 5733391194015525, 5871086572691471625
Offset: 1

Views

Author

Paul D. Hanna, Jul 18 2005

Keywords

Comments

Limit a(n)/A110258(n) = limit A110255(2*n-1)/A110256(2*n-1) = 4/Pi.

Examples

			arctan(1/x) = 1/x - 1/(3*x^3) + 1/(5*x^5) - 1/(7*x^7) +-...
= [0; x, 3*x, 5/4*x, 28/9*x, 81/64*x, 704/225*x, 325/256*x, 768/245*x, 20825/16384*x, 311296/99225*x, 83349/65536*x, 1507328/480249*x, 1334025/1048576*x, 3145728/1002001*x,...]
= 1/(x + 1/(3*x + 1/(5/4*x + 1/(28/9*x + 1/(81/64*x +...))))).
The coefficients of x in the even-indexed partial quotients converge to Pi: {3, 28/9, 704/225, 768/245, 311296/99225, ...}.
The coefficients of x in the odd-indexed partial quotients converge to 4/Pi: {1, 5/4, 81/64, 325/256, 20825/16384, ...}.
		

Crossrefs

Cf. A110258 (denominators), A110255/A110256 (continued fraction), A110259/A110260.

Programs

  • Maple
    a := n -> (4*n+1)*binomial(2*n,n)^2/4^(add(i,i=convert(n,base,2)));
    seq(a(n), n=0..16);  # Peter Luschny, Mar 23 2014
  • Mathematica
    a[n_] := (4n+1) Binomial[2n, n]^2 / 4^DigitCount[n, 2, 1];
    Array[a, 16] (* Jean-François Alcover, Jun 13 2019, from Maple *)
  • PARI
    {a(n)=numerator(subst((contfrac( sum(k=0,2*n+1,(-1)^k/x^(2*k+1)/(2*k+1)),2*n+2))[2*n],x,1))}

Formula

a(n) = A110255(2*n-1).
a(n) = (4*n+1)*A002894(n)/4^A000120(n). - Peter Luschny, Mar 23 2014

A110259 Numerators in the coefficients that form the even-indexed partial quotients of the continued fraction representation of the inverse tangent of 1/x.

Original entry on oeis.org

3, 28, 704, 768, 311296, 1507328, 3145728, 130023424, 7516192768, 12884901888, 2954937499648, 12919261626368, 52776558133248, 774056185954304, 66428094503714816, 31525197391593472, 308982963234634989568
Offset: 1

Views

Author

Paul D. Hanna, Jul 18 2005

Keywords

Comments

Lim_{n->infinity} a(n)/A110260(n) = lim_{n->infinity} A110255(2*n)/A110256(2*n) = Pi.
The continued fraction expansion arctan(z) = z/(1 + z^2/(3 + 4*z^2/(5 + 9*z^2/(7 + ...)))) is due to Lambert - see Roegel, Section 1.2.1. - Peter Bala, Dec 02 2021

Examples

			arctan(1/x) = 1/x - 1/(3*x^3) + 1/(5*x^5) - 1/(7*x^7) +- ...
arctan(1/x) = [0; x, 3*x, (5/4)*x, (28/9)*x, (81/64)*x, (704/225)*x, (325/256)*x, (768/245)*x, (20825/16384)*x, (311296/99225)*x, (83349/65536)*x, (1507328/480249)*x, (1334025/1048576)*x, (3145728/1002001)*x, ...]
arctan(1/x) = 1/(x + 1/(3*x + 1/(5/4*x + 1/(28/9*x + 1/(81/64*x + ...))))).
The coefficients of x in the even-indexed partial quotients converge to Pi: {3, 28/9, 704/225, 768/245, 311296/99225, ...}.
The coefficients of x in the odd-indexed partial quotients converge to 4/Pi: {1, 5/4, 81/64, 325/256, 20825/16384, ...}.
From _Peter Bala_, Dec 02 2021: (Start)
Making use of the expansion 2*arcsin(sqrt(x)/2)^2 = Sum_{n >= 1} x^n/ (n^2*binomial(2*n,n)) we calculate
3 + Pi = Sum_{n >= 1} (2^n)*n/binomial(2*n,n);
28 + 9*Pi = Sum_{n >= 3} (2^n)*n*(n-1)*(n-2)/binomial(2*n,n);
704 + 225*Pi = Sum_{n >= 5} (2^n)*n*(n-1)*...*(n-4)/binomial(2*n,n);
45*(768 + 245*Pi) = Sum_{n >= 7} (2^n)*n*(n-1)*...*(n-6)/binomial(2*n,n);
9*(311296 + 99225*Pi) = Sum_{n >= 9} (2^n)*n*(n-1)*...*(n-8)/ binomial(2*n,n).
It appears that Sum_{n >= 2*k+1} (2^n)*n*(n-1)*...*(n-2*k)/binomial(2*n,n) = N(2*k) + D(2*k)*Pi, where the ratios N(2*k)/D(2*k) are equal to the even-indexed partial quotients of Lambert's continued fraction representation of the inverse tangent of 1/x. (End)
		

Crossrefs

Cf. A110260 (denominators), A110255/A110256 (continued fraction), A110257/A110258.

Programs

  • PARI
    {a(n)=numerator(subst((contfrac( sum(k=0,2*n+2,(-1)^k/x^(2*k+1)/(2*k+1)),2*n+2))[2*n+1],x,1))}

Formula

a(n) = A110255(2*n).
Showing 1-6 of 6 results.