cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038568 Numerators in canonical bijection from positive integers to positive rationals.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 4, 1, 5, 2, 5, 3, 5, 4, 5, 1, 6, 5, 6, 1, 7, 2, 7, 3, 7, 4, 7, 5, 7, 6, 7, 1, 8, 3, 8, 5, 8, 7, 8, 1, 9, 2, 9, 4, 9, 5, 9, 7, 9, 8, 9, 1, 10, 3, 10, 7, 10, 9, 10, 1, 11, 2, 11, 3, 11, 4, 11, 5, 11, 6, 11, 7, 11, 8, 11, 9, 11, 10, 11, 1, 12, 5, 12, 7, 12, 11, 12, 1, 13, 2
Offset: 0

Views

Author

Keywords

Comments

Even-indexed terms are positive integers in order, with m occurring phi(m) times. Preceding odd-indexed terms (except for missing initial 0) are the corresponding numbers <= m and relatively prime to m, in increasing order. The denominators are just this sequence shifted left. Thus each positive rational occurs exactly once as a ratio a(n)/a(n+1). - Franklin T. Adams-Watters, Dec 06 2006

Examples

			First arrange fractions by increasing denominator, then by increasing numerator:
1/1, 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, ... (this is A038566/A038567);
now follow each term (except the first) with its reciprocal:
1/1, 1/2, 2/1, 1/3, 3/1, 2/3, 3/2, 1/4, 4/1, 3/4, 4/3, ... (this is A038568/A038569).
		

References

  • H. Lauwerier, Fractals, Princeton Univ. Press, p. 23.

Crossrefs

Programs

  • Julia
    using Nemo
    function A038568List(len)
        a, A = QQ(0), []
        for n in 1:len
            a = next_minimal(a)
            push!(A, numerator(a))
        end
    A end
    A038568List(84) |> println # Peter Luschny, Mar 13 2018
    
  • Maple
    with (numtheory): A038568 := proc (n) local sum, j, k; sum := 1: k := 2: while (sum < n) do: sum := sum + 2 * phi(k): k := k + 1: od: sum := sum - 2 * phi(k-1): j := 1: while sum < n do: if gcd(j,k-1) = 1 then sum := sum + 2: fi: j := j+1: od: if sum > n then RETURN (j-1) fi: RETURN (k-1): end: # Ulrich Schimke (ulrschimke(AT)aol.com)
  • Mathematica
    a[n_] := Module[{sum = 1, k = 2}, While[sum < n, sum = sum + 2*EulerPhi[k]; k = k+1]; sum = sum - 2*EulerPhi[k-1]; j = 1; While[sum < n, If[GCD[j, k-1] == 1, sum = sum+2]; j = j+1; ]; If[sum > n, Return[j-1]]; Return[k-1] ]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 21 2012, translated from Maple *)
  • PARI
    a(n) = { my (e); for (q=1, oo, if (n+1<2*e=eulerphi(q), for (p=1, oo, if (gcd(p,q)==1, if (n+1<2, return ([p,q][n+2]), n-=2))), n-=2*e)) } \\ Rémy Sigrist, Feb 25 2021
  • Python
    from sympy import totient, gcd
    def a(n):
        s=1
        k=2
        while sn: return j - 1
        return k - 1 # Indranil Ghosh, May 23 2017, translated from Mathematica
    

Extensions

More terms from Erich Friedman