A340922 a(n) is the position of phi(A038568(n)^2)/phi(A038569(n)^2) in the enumeration of the rationals by A038568 and A038569, where phi is A000010.
0, 1, 2, 19, 20, 3, 4, 35, 36, 9, 10, 239, 240, 55, 56, 57, 58, 13, 14, 83, 84, 16, 15, 1059, 1060, 255, 256, 23, 24, 259, 260, 265, 266, 25, 26, 615, 616, 145, 146, 39, 40, 272, 271, 1763, 1764, 423, 424, 427, 428, 435, 436, 51, 52, 443, 444, 947, 948, 241, 242
Offset: 0
Keywords
Examples
n 0 1 2 3 4 5 6 7 8 9 10 j/k 1 1/2 2 1/3 3 2/3 3/2 1/4 4 3/4 4/3 phi(j^2)/phi(k^2) 1 1/2 2 1/6 6 1/3 3 1/8 8 3/4 4/3 a(n) 0 1 2 19 20 3 4 35 36 9 10 . n 11 12 13 14 15 16 17 18 19 20 j/k 1/5 5 2/5 5/2 3/5 5/3 4/5 5/4 1/6 6 phi(j^2)/phi(k^2) 1/20 20 1/10 10 3/10 10/3 2/5 5/2 1/12 12 a(n) 239 240 55 56 57 58 13 14 83 84
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10000
- Hongjian Li, Pingzhi Yuan, and Hairong Bai, Positive Rational Numbers of the Form phi(n^2)/phi(m^2), The American Mathematical Monthly, 128:2 (2021), 174-176.
- Rémy Sigrist, PARI program for A340922
Programs
-
Julia
using Nemo function A340922List(len) num(a) = euler_phi(numerator(a)^2) den(a) = euler_phi(denominator(a)^2) a, q, A, R = QQ(0), QQ(0), [], Int[] for n in 1:len q = next_minimal(q) x = num(q)//den(q) while true i = findfirst(isequal(x), A) if i == nothing a = next_minimal(a) push!(A, a) else push!(R, i - 1) break end end end R end A340922List(59) |> println # Peter Luschny, Feb 19 2021
-
PARI
\\ It is assumed that a38568 and a38569 are available as vectors, \\ e.g. from the corresponding b-files. \\ a38568=readvec("[path] a38568"); a38569=readvec("[path] a38569"); findinlist(n,d)={my(num=numerator(n/d),den=denominator(n/d));for(k=1,#a38568,if(num==a38568[k]&&den==a38569[k],return(k)));0}; for(k=1,60,my(m=a38568[k],n=a38569[k],num=eulerphi(m^2),den=eulerphi(n^2));print1(findinlist(num,den)-1,", "))
Comments