cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038629 Convolution of Catalan numbers A000108 with Catalan numbers but C(0)=1 replaced by 3.

Original entry on oeis.org

3, 4, 9, 24, 70, 216, 693, 2288, 7722, 26520, 92378, 325584, 1158924, 4160240, 15043725, 54747360, 200360130, 736928280, 2722540590, 10098646800, 37594507860, 140415097680, 526024740930, 1976023374624, 7441754696100, 28091245875056, 106268257060308, 402815053582368
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000108.

Programs

  • Magma
    [6*Binomial(2*n, n)/(n+2): n in [0..30]]; // Vincenzo Librandi, May 10 2012
    
  • Mathematica
    Table[CatalanNumber[n + 1] + 2 CatalanNumber[n], {n, 0, 30}] (* Vincenzo Librandi, May 10 2012 *)
  • PARI
    vector(100, n, n--; 6*binomial(2*n, n)/(n+2)) \\ Altug Alkan, Oct 31 2015

Formula

a(n) = 6*binomial(2*n, n)/(n+2) = C(n+1)+2*C(n) where C(n) are Catalan numbers.
G.f.: c(x)*(c(x)+2), where c(x) is the g.f. for Catalan numbers.
D-finite with recurrence (n+2)*a(n) -2*(n+1)*a(n-1) +4*(-2*n+3)*a(n-2)=0. - R. J. Mathar, Dec 10 2013
From Amiram Eldar, Feb 14 2023: (Start)
Sum_{n>=0} 1/a(n) = Pi/(9*sqrt(3)) + 5/9.
Sum_{n>=0} (-1)^n/a(n) = 17/75 - 22*log(phi)/(75*sqrt(5)), where phi is the golden ratio (A001622). (End)