cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A078817 Table by antidiagonals giving variants on Catalan sequence: T(n,k)=C(2n,n)*C(2k,k)*(2k+1)/(n+k+1).

Original entry on oeis.org

1, 3, 1, 10, 4, 2, 35, 15, 9, 5, 126, 56, 36, 24, 14, 462, 210, 140, 100, 70, 42, 1716, 792, 540, 400, 300, 216, 132, 6435, 3003, 2079, 1575, 1225, 945, 693, 429, 24310, 11440, 8008, 6160, 4900, 3920, 3080, 2288, 1430, 92378, 43758, 30888, 24024, 19404
Offset: 0

Views

Author

Henry Bottomley, Dec 07 2002

Keywords

Examples

			Rows start:
     1,     3,    10,    35,   126,   462,  1716,
     1,     4,    15,    56,   210,   792,  3003,
     2,     9,    36,   140,   540,  2079,  8008,
     5,    24,   100,   400,  1575,  6160, 24024,
    14,    70,   300,  1225,  4900, 19404, 76440,
    42,   216,   945,  3920, 15876, 63504,252252,
   132,   693,  3080, 12936, 52920,213444,853776,
etc.
		

Crossrefs

Columns include A000108 (catalan), A038629, A078818 and A078819. Rows include A001700, A001791, A007946 and A078820. Diagonals include A002894 and A060150.
Essentially a reflected version of A033820.

Programs

  • Maple
    A078817 := proc(n,k)
        binomial(2*n,n)*binomial(2*k,k)*(2*k+1)/(n+k+1) ;
    end proc: # R. J. Mathar, Dec 06 2018

Formula

T(n, k) = A000984(n)*A002457(k)/(n+k+1) = T(k, n)*(2k+1)/(2n+1).

A078818 a(n) = 30*binomial(2n,n)/(n+3).

Original entry on oeis.org

10, 15, 36, 100, 300, 945, 3080, 10296, 35100, 121550, 426360, 1511640, 5408312, 19501125, 70794000, 258529200, 949074300, 3500409330, 12964479000, 48198087000, 179799820200, 672822343050, 2524918756464, 9500112378000, 35830670759000, 135439935469020
Offset: 0

Views

Author

Henry Bottomley, Dec 07 2002

Keywords

Examples

			a(5) = 30*binomial(10,5)/8 = 945.
		

Crossrefs

Programs

  • GAP
    List([0..30],n->30*Binomial(2*n,n)/(n+3)); # Muniru A Asiru, Aug 09 2018
    
  • Magma
    [30*Binomial(2*n,n)/(n+3): n in [0..30]]; // Vincenzo Librandi, Aug 11 2018
  • Mathematica
    Table[(30 Binomial[2 n, n] / (n + 3)), {n, 0, 30}] (* Vincenzo Librandi, Aug 11 2018 *)

Formula

D-finite with recurrence a(n) = a(n-1)*(4n^2+6n-4)/(n^2+3n) = A078817(n, 2) = 5*A007946(n)/(2n+1) = 30*A000984(n)/(n+3).
From Amiram Eldar, Feb 16 2023: (Start)
Sum_{n>=0} 1/a(n) = 4*Pi/(135*sqrt(3)) + 7/45.
Sum_{n>=0} (-1)^n/a(n) = 9/125 - 32*log(phi)/(375*sqrt(5)), where phi is the golden ratio (A001622). (End)

A078819 a(n) = 140*C(2n,n)/(n+4).

Original entry on oeis.org

35, 56, 140, 400, 1225, 3920, 12936, 43680, 150150, 523600, 1847560, 6584032, 23661365, 85652000, 312018000, 1142971200, 4207562730, 15557374800, 57750861000, 215145084000, 804104751450, 3014244096864, 11329763650800, 42691863032000, 161238018415500, 610258100044320
Offset: 0

Views

Author

Henry Bottomley, Dec 07 2002

Keywords

Examples

			a(5)=140*C(10,5)/9=3920
		

Crossrefs

Programs

  • Mathematica
    Table[140*Binomial[2*n, n]/(n + 4), {n, 0, 30}] (* Amiram Eldar, Feb 16 2023 *)

Formula

D-finite with recurrence a(n) = a(n-1)*(4n^2+10n-6)/(n^2+4n) = A078817(n, 3) = 7*A078820(n)/(2n+1) = 140*A000984(n)/(n+4).
From Amiram Eldar, Feb 16 2023: (Start)
Sum_{n>=0} 1/a(n) = Pi/(126*sqrt(3)) + 3/70.
Sum_{n>=0} (-1)^n/a(n) = 37/1750 - 3*log(phi)/(125*sqrt(5)), where phi is the golden ratio (A001622). (End)

A352680 Array read by ascending antidiagonals. A family of Catalan-like sequences. A(n, k) = [x^k] ((n - 1)*x + 1)*(1 - sqrt(1 - 4*x))/(2*x).

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 2, 3, 1, 3, 3, 5, 9, 1, 4, 4, 7, 14, 28, 1, 5, 5, 9, 19, 42, 90, 1, 6, 6, 11, 24, 56, 132, 297, 1, 7, 7, 13, 29, 70, 174, 429, 1001, 1, 8, 8, 15, 34, 84, 216, 561, 1430, 3432, 1, 9, 9, 17, 39, 98, 258, 693, 1859, 4862, 11934, 1, 10, 10, 19, 44, 112, 300, 825, 2288, 6292, 16796, 41990
Offset: 0

Views

Author

Peter Luschny, Mar 27 2022

Keywords

Examples

			Array starts:
n\k 0, 1,  2,  3,  4,   5,   6,    7,    8,     9, ...
------------------------------------------------------
[0] 1, 0,  1,  3,  9,  28,  90,  297, 1001,  3432, ... A071724
[1] 1, 1,  2,  5, 14,  42, 132,  429, 1430,  4862, ... A000108
[2] 1, 2,  3,  7, 19,  56, 174,  561, 1859,  6292, ... A071716
[3] 1, 3,  4,  9, 24,  70, 216,  693, 2288,  7722, ... A038629
[4] 1, 4,  5, 11, 29,  84, 258,  825, 2717,  9152, ... A352681
[5] 1, 5,  6, 13, 34,  98, 300,  957, 3146, 10582, ...
[6] 1, 6,  7, 15, 39, 112, 342, 1089, 3575, 12012, ...
[7] 1, 7,  8, 17, 44, 126, 384, 1221, 4004, 13442, ...
[8] 1, 8,  9, 19, 49, 140, 426, 1353, 4433, 14872, ...
[9] 1, 9, 10, 21, 54, 154, 468, 1485, 4862, 16302, ...
.
Seen as a triangle:
[0] 1;
[1] 1, 0;
[1] 1, 1, 1;
[2] 1, 2, 2,  3;
[3] 1, 3, 3,  5,  9;
[4] 1, 4, 4,  7, 14, 28;
[5] 1, 5, 5,  9, 19, 42,  90;
[6] 1, 6, 6, 11, 24, 56, 132, 297;
		

Crossrefs

Diagonals: A077587 (main), A271823.
Compare A352682 for a similar array based on the Bell numbers.

Programs

  • Julia
    # Compare with the Julia function A352686Row.
    function A352680Row(n, len)
        a = BigInt(n)
        P = BigInt[1]; T = BigInt[1]
        for k in 0:len-1
            T = push!(T, a)
            P = cumsum(push!(P, a))
            a = P[end]
        end
    T end
    for n in 0:9 println(A352680Row(n, 9)) end
  • Maple
    for n from 0 to 9 do
        ogf := ((n - 1)*x + 1)*(1 - sqrt(1 - 4*x))/(2*x);
        ser := series(ogf, x, 12):
        print(seq(coeff(ser, x, k), k = 0..9)); od:
    # Alternative:
    alias(PS = ListTools:-PartialSums):
    CatalanRow := proc(n, len) local a, k, P, R;
    a := n; P := [1]; R := [1];
    for k from 0 to len-1 do
        R := [op(R), a]; P := PS([op(P), a]); a := P[-1] od;
    R end: seq(lprint(CatalanRow(n, 9)), n = 0..9);
    # Recurrence:
    A := proc(n, k) option remember: if k < 3 then [1, n, n + 1][k + 1] else
    A(n, k-1)*((6 - 4*k)*(n - 3 + k*(3 + n)))/((1 + k)*(6 - k*(3 + n))) fi end:
    seq(print(seq(A(n, k), k = 0..9)), n = 0..9);
  • Mathematica
    T[n_, 0] := 1;
    T[n_, k_] := (n - 1) CatalanNumber[k - 1] + CatalanNumber[k];
    Table[T[n, k], {n, 0, 9}, {k, 0, 9}] // TableForm

Formula

A(n, k) = (n-1)*CatalanNumber(k-1) + CatalanNumber(k) for n >= 0 and k >= 1, A(n, 0) = 1. (Cf. A352682.)
D-finite with recurrence: A(n, k) = A(n, k-1)*((6 - 4*k)*(n - 3 + k*(3 + n)))/((1 + k)*(6 - k*(3 + n))) for k >= 3, otherwise 1, n, n + 1 for k = 0, 1, 2.
Given a list T let PS(T) denote the list of partial sums of T. Given two list S and T let [S, T] denote the concatenation of the lists. Further let P[end] denote the last element of the list P. Row n of the array A with length k can be computed by the following procedure:
A = [n], P = [1], R = [1];
Repeat k times: R = [R, A], P = PS([P, A]), A = [P[end]];
Return R.
Showing 1-4 of 4 results.