cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A078818 a(n) = 30*binomial(2n,n)/(n+3).

Original entry on oeis.org

10, 15, 36, 100, 300, 945, 3080, 10296, 35100, 121550, 426360, 1511640, 5408312, 19501125, 70794000, 258529200, 949074300, 3500409330, 12964479000, 48198087000, 179799820200, 672822343050, 2524918756464, 9500112378000, 35830670759000, 135439935469020
Offset: 0

Views

Author

Henry Bottomley, Dec 07 2002

Keywords

Examples

			a(5) = 30*binomial(10,5)/8 = 945.
		

Crossrefs

Programs

  • GAP
    List([0..30],n->30*Binomial(2*n,n)/(n+3)); # Muniru A Asiru, Aug 09 2018
    
  • Magma
    [30*Binomial(2*n,n)/(n+3): n in [0..30]]; // Vincenzo Librandi, Aug 11 2018
  • Mathematica
    Table[(30 Binomial[2 n, n] / (n + 3)), {n, 0, 30}] (* Vincenzo Librandi, Aug 11 2018 *)

Formula

D-finite with recurrence a(n) = a(n-1)*(4n^2+6n-4)/(n^2+3n) = A078817(n, 2) = 5*A007946(n)/(2n+1) = 30*A000984(n)/(n+3).
From Amiram Eldar, Feb 16 2023: (Start)
Sum_{n>=0} 1/a(n) = 4*Pi/(135*sqrt(3)) + 7/45.
Sum_{n>=0} (-1)^n/a(n) = 9/125 - 32*log(phi)/(375*sqrt(5)), where phi is the golden ratio (A001622). (End)

A078819 a(n) = 140*C(2n,n)/(n+4).

Original entry on oeis.org

35, 56, 140, 400, 1225, 3920, 12936, 43680, 150150, 523600, 1847560, 6584032, 23661365, 85652000, 312018000, 1142971200, 4207562730, 15557374800, 57750861000, 215145084000, 804104751450, 3014244096864, 11329763650800, 42691863032000, 161238018415500, 610258100044320
Offset: 0

Views

Author

Henry Bottomley, Dec 07 2002

Keywords

Examples

			a(5)=140*C(10,5)/9=3920
		

Crossrefs

Programs

  • Mathematica
    Table[140*Binomial[2*n, n]/(n + 4), {n, 0, 30}] (* Amiram Eldar, Feb 16 2023 *)

Formula

D-finite with recurrence a(n) = a(n-1)*(4n^2+10n-6)/(n^2+4n) = A078817(n, 3) = 7*A078820(n)/(2n+1) = 140*A000984(n)/(n+4).
From Amiram Eldar, Feb 16 2023: (Start)
Sum_{n>=0} 1/a(n) = Pi/(126*sqrt(3)) + 3/70.
Sum_{n>=0} (-1)^n/a(n) = 37/1750 - 3*log(phi)/(125*sqrt(5)), where phi is the golden ratio (A001622). (End)

A078820 a(n) = 20*C(2n,n)*(2n+1)/(n+4).

Original entry on oeis.org

5, 24, 100, 400, 1575, 6160, 24024, 93600, 364650, 1421200, 5542680, 21633248, 84504875, 330372000, 1292646000, 5061729600, 19835652870, 77786874000, 305254551000, 1198665468000, 4709756401350, 18516070880736, 72834194898000, 286645366072000, 1128666128908500
Offset: 0

Views

Author

Henry Bottomley, Dec 07 2002

Keywords

Examples

			a(5)=20*C(10,5)*11/9=6160.
		

Crossrefs

Programs

  • Mathematica
    Table[20Binomial[2n,n] (2n+1)/(n+4),{n,0,30}] (* Harvey P. Dale, Nov 02 2011 *)

Formula

D-finite with recurrence a(n) = a(n-1)*(4n^2+14n+6)/(n^2+4n) = A078817(3, n) = (2n+1)*A078819(n)/7 = 20*A002457(n)/(n+4).
From Amiram Eldar, Feb 16 2023: (Start)
Sum_{n>=0} 1/a(n) = 11*Pi/(90*sqrt(3)) + 1/30.
Sum_{n>=0} (-1)^n/a(n) = 17*log(phi)/(25*sqrt(5)) + 1/50, where phi is the golden ratio (A001622). (End)

A033820 Triangle read by rows: T(k,j) = ((2*j+1)/(k+1))*binomial(2*j,j)*binomial(2*k-2*j,k-j).

Original entry on oeis.org

1, 1, 3, 2, 4, 10, 5, 9, 15, 35, 14, 24, 36, 56, 126, 42, 70, 100, 140, 210, 462, 132, 216, 300, 400, 540, 792, 1716, 429, 693, 945, 1225, 1575, 2079, 3003, 6435, 1430, 2288, 3080, 3920, 4900, 6160, 8008, 11440, 24310, 4862, 7722, 10296, 12936, 15876, 19404
Offset: 0

Views

Author

Keywords

Comments

f(n,k) = 2^{n-2(k-2)}sum(T(k-2,j)*binomial(n+2*(k-2-j),2*(k-2-j)),j=0..k-2) is the number of length n k-ary strings (k >= 2) which avoid a rising triple (pattern 123) or any other given 3-letter permutation pattern.
Row sums are the powers of 4. This is explained by a simple statistic on the 4^n lattice paths of length 2n formed from upsteps U=(1,1) and downsteps D=(1,-1). For such a path, define X = number of upsteps that lie above ground level (GL), the horizontal line through the initial vertex, and before the last vertex at GL. For UDDUUUUDDU for instance, the last vertex at GL follows the fourth step, and so X = 1. T(n,k) is the number of these paths with X=n-k. For example, T(2,1)=4 counts UDUU, UDDU, UDDD, DUUD because each has n-k=1 upsteps above GL and before the last vertex at GL. - David Callan, Nov 21 2011

Examples

			{1},
{1, 3},
{2, 4, 10},
{5, 9, 15, 35},
{14, 24, 36, 56, 126},
{42, 70, 100, 140, 210, 462},
{132, 216, 300, 400, 540, 792, 1716},
...
		

Crossrefs

Essentially a reflected version of A078817.

Formula

T(k,0) = binomial(2*k, k)/(k+1), the k-th Catalan number; T(k,k) = binomial(2*(k+1),k+1)/2, half the (k+1)-st central binomial coefficient sum of entries in row k (over j) = 2^{2*(k-1)}
T(k,j) = sum(C(k-i)D(i), i=0..j), C(i) = binomial(2*i,i)/(i+1), D(i) = binomial(2*i,i).
G.f.: 2/(1-4*x*y+sqrt((1-4*x)*(1-4*x*y))). - Vladeta Jovovic, Dec 14 2003

Extensions

More terms from Vladeta Jovovic, Dec 10 2003
Showing 1-4 of 4 results.