A078818
a(n) = 30*binomial(2n,n)/(n+3).
Original entry on oeis.org
10, 15, 36, 100, 300, 945, 3080, 10296, 35100, 121550, 426360, 1511640, 5408312, 19501125, 70794000, 258529200, 949074300, 3500409330, 12964479000, 48198087000, 179799820200, 672822343050, 2524918756464, 9500112378000, 35830670759000, 135439935469020
Offset: 0
a(5) = 30*binomial(10,5)/8 = 945.
-
List([0..30],n->30*Binomial(2*n,n)/(n+3)); # Muniru A Asiru, Aug 09 2018
-
[30*Binomial(2*n,n)/(n+3): n in [0..30]]; // Vincenzo Librandi, Aug 11 2018
-
Table[(30 Binomial[2 n, n] / (n + 3)), {n, 0, 30}] (* Vincenzo Librandi, Aug 11 2018 *)
A078819
a(n) = 140*C(2n,n)/(n+4).
Original entry on oeis.org
35, 56, 140, 400, 1225, 3920, 12936, 43680, 150150, 523600, 1847560, 6584032, 23661365, 85652000, 312018000, 1142971200, 4207562730, 15557374800, 57750861000, 215145084000, 804104751450, 3014244096864, 11329763650800, 42691863032000, 161238018415500, 610258100044320
Offset: 0
-
Table[140*Binomial[2*n, n]/(n + 4), {n, 0, 30}] (* Amiram Eldar, Feb 16 2023 *)
A078820
a(n) = 20*C(2n,n)*(2n+1)/(n+4).
Original entry on oeis.org
5, 24, 100, 400, 1575, 6160, 24024, 93600, 364650, 1421200, 5542680, 21633248, 84504875, 330372000, 1292646000, 5061729600, 19835652870, 77786874000, 305254551000, 1198665468000, 4709756401350, 18516070880736, 72834194898000, 286645366072000, 1128666128908500
Offset: 0
a(5)=20*C(10,5)*11/9=6160.
-
Table[20Binomial[2n,n] (2n+1)/(n+4),{n,0,30}] (* Harvey P. Dale, Nov 02 2011 *)
A033820
Triangle read by rows: T(k,j) = ((2*j+1)/(k+1))*binomial(2*j,j)*binomial(2*k-2*j,k-j).
Original entry on oeis.org
1, 1, 3, 2, 4, 10, 5, 9, 15, 35, 14, 24, 36, 56, 126, 42, 70, 100, 140, 210, 462, 132, 216, 300, 400, 540, 792, 1716, 429, 693, 945, 1225, 1575, 2079, 3003, 6435, 1430, 2288, 3080, 3920, 4900, 6160, 8008, 11440, 24310, 4862, 7722, 10296, 12936, 15876, 19404
Offset: 0
{1},
{1, 3},
{2, 4, 10},
{5, 9, 15, 35},
{14, 24, 36, 56, 126},
{42, 70, 100, 140, 210, 462},
{132, 216, 300, 400, 540, 792, 1716},
...
- Alexander Burstein, Enumeration of words with forbidden patterns, Ph.D. thesis, University of Pennsylvania, 1998.
- Ira Gessel, Super ballot numbers, J. Symbolic Computation 14 (1992), 179-194.
- Walter Shur, Two Game-Set Inequalities, J. Integer Seqs., Vol. 6, 2003.
Essentially a reflected version of
A078817.
Showing 1-4 of 4 results.
Comments