cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A078817 Table by antidiagonals giving variants on Catalan sequence: T(n,k)=C(2n,n)*C(2k,k)*(2k+1)/(n+k+1).

Original entry on oeis.org

1, 3, 1, 10, 4, 2, 35, 15, 9, 5, 126, 56, 36, 24, 14, 462, 210, 140, 100, 70, 42, 1716, 792, 540, 400, 300, 216, 132, 6435, 3003, 2079, 1575, 1225, 945, 693, 429, 24310, 11440, 8008, 6160, 4900, 3920, 3080, 2288, 1430, 92378, 43758, 30888, 24024, 19404
Offset: 0

Views

Author

Henry Bottomley, Dec 07 2002

Keywords

Examples

			Rows start:
     1,     3,    10,    35,   126,   462,  1716,
     1,     4,    15,    56,   210,   792,  3003,
     2,     9,    36,   140,   540,  2079,  8008,
     5,    24,   100,   400,  1575,  6160, 24024,
    14,    70,   300,  1225,  4900, 19404, 76440,
    42,   216,   945,  3920, 15876, 63504,252252,
   132,   693,  3080, 12936, 52920,213444,853776,
etc.
		

Crossrefs

Columns include A000108 (catalan), A038629, A078818 and A078819. Rows include A001700, A001791, A007946 and A078820. Diagonals include A002894 and A060150.
Essentially a reflected version of A033820.

Programs

  • Maple
    A078817 := proc(n,k)
        binomial(2*n,n)*binomial(2*k,k)*(2*k+1)/(n+k+1) ;
    end proc: # R. J. Mathar, Dec 06 2018

Formula

T(n, k) = A000984(n)*A002457(k)/(n+k+1) = T(k, n)*(2k+1)/(2n+1).

A078819 a(n) = 140*C(2n,n)/(n+4).

Original entry on oeis.org

35, 56, 140, 400, 1225, 3920, 12936, 43680, 150150, 523600, 1847560, 6584032, 23661365, 85652000, 312018000, 1142971200, 4207562730, 15557374800, 57750861000, 215145084000, 804104751450, 3014244096864, 11329763650800, 42691863032000, 161238018415500, 610258100044320
Offset: 0

Views

Author

Henry Bottomley, Dec 07 2002

Keywords

Examples

			a(5)=140*C(10,5)/9=3920
		

Crossrefs

Programs

  • Mathematica
    Table[140*Binomial[2*n, n]/(n + 4), {n, 0, 30}] (* Amiram Eldar, Feb 16 2023 *)

Formula

D-finite with recurrence a(n) = a(n-1)*(4n^2+10n-6)/(n^2+4n) = A078817(n, 3) = 7*A078820(n)/(2n+1) = 140*A000984(n)/(n+4).
From Amiram Eldar, Feb 16 2023: (Start)
Sum_{n>=0} 1/a(n) = Pi/(126*sqrt(3)) + 3/70.
Sum_{n>=0} (-1)^n/a(n) = 37/1750 - 3*log(phi)/(125*sqrt(5)), where phi is the golden ratio (A001622). (End)

A246507 a(n) = 70*(n+1)*binomial(2*n+1,n+1)/(n+5).

Original entry on oeis.org

14, 70, 300, 1225, 4900, 19404, 76440, 300300, 1178100, 4618900, 18106088, 70984095, 278369000, 1092063000, 4286142000, 16830250920, 66118842900, 259878874500, 1021939149000, 4020523757250, 15824781508536, 62313700079400, 245478212434000, 967428110493000, 3814113125277000
Offset: 0

Views

Author

Karol A. Penson, Aug 27 2014

Keywords

Comments

4*a(n+1) is the number of annular noncrossing permutations of parameter 4, see the references.

Crossrefs

Programs

  • Magma
    [70*(n+1)*Binomial(2*n+1,n+1)/(n+5): n in [0..30]]; // Vincenzo Librandi, Aug 29 2014
    
  • Mathematica
    Table[70 (n+1) Binomial[2 n + 1, n + 1]/(n + 5), {n, 0, 30}] (* Vincenzo Librandi, Aug 29 2014 *)
  • PARI
    for(n=0,25, print1(70*(n+1)*binomial(2*n+1,n+1)/(n+5), ", ")) \\ G. C. Greubel, Apr 06 2017

Formula

O.g.f.: 2*(1-sqrt(1-4*z)-2*z-2*z^2-4*z^3-10*z^4)/(sqrt(1-4*z) *4*z^5).
Representation as the n-th moment of a signed function w(x) = 2*sqrt(x)*(x^4-2*x^3-2*x^2-4*x-10)/(4*Pi*sqrt(4-x)) on the segment x = (0,4): a(n) = Integral_{x=0..4} x^n*w(x) dx. The function w(x) -> 0 for x -> 0, and w(x) -> infinity for x->4.
a(n) ~ (35/65536)*4^n*(-755913243+151182552*n - 30236416*n^2 + 6047744*n^3 - 1212416*n^4 + 262144*n^5)/(n^(11/2)*sqrt(Pi)).
Another asymptotic series starts: a(n) ~ exp(n*log(4) + log((70*(2*n+1))/(n+5)) - log(Pi*n)/2 - 1/(8*n)). - Peter Luschny, Aug 28 2014
n*(n+5)*a(n) -2*(n+4)*(2*n+1)*a(n-1) = 0. - R. J. Mathar, Jun 14 2016
From Amiram Eldar, Feb 16 2023: (Start)
Sum_{n>=0} 1/a(n) = 2*Pi/(45*sqrt(3)) + 1/105.
Sum_{n>=0} (-1)^n/a(n) = 44*log(phi)/(175*sqrt(5)) + 1/175, where phi is the golden ratio (A001622). (End)
Showing 1-3 of 3 results.