A078817
Table by antidiagonals giving variants on Catalan sequence: T(n,k)=C(2n,n)*C(2k,k)*(2k+1)/(n+k+1).
Original entry on oeis.org
1, 3, 1, 10, 4, 2, 35, 15, 9, 5, 126, 56, 36, 24, 14, 462, 210, 140, 100, 70, 42, 1716, 792, 540, 400, 300, 216, 132, 6435, 3003, 2079, 1575, 1225, 945, 693, 429, 24310, 11440, 8008, 6160, 4900, 3920, 3080, 2288, 1430, 92378, 43758, 30888, 24024, 19404
Offset: 0
Rows start:
1, 3, 10, 35, 126, 462, 1716,
1, 4, 15, 56, 210, 792, 3003,
2, 9, 36, 140, 540, 2079, 8008,
5, 24, 100, 400, 1575, 6160, 24024,
14, 70, 300, 1225, 4900, 19404, 76440,
42, 216, 945, 3920, 15876, 63504,252252,
132, 693, 3080, 12936, 52920,213444,853776,
etc.
- Ira Gessel, Super ballot numbers, J. Symbolic Computation 14 (1992), 179-194.
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.
- Jovan Mikic, A Note on the Gessel Numbers, arXiv:2203.12931 [math.CO], 2022.
Essentially a reflected version of
A033820.
-
A078817 := proc(n,k)
binomial(2*n,n)*binomial(2*k,k)*(2*k+1)/(n+k+1) ;
end proc: # R. J. Mathar, Dec 06 2018
A078819
a(n) = 140*C(2n,n)/(n+4).
Original entry on oeis.org
35, 56, 140, 400, 1225, 3920, 12936, 43680, 150150, 523600, 1847560, 6584032, 23661365, 85652000, 312018000, 1142971200, 4207562730, 15557374800, 57750861000, 215145084000, 804104751450, 3014244096864, 11329763650800, 42691863032000, 161238018415500, 610258100044320
Offset: 0
-
Table[140*Binomial[2*n, n]/(n + 4), {n, 0, 30}] (* Amiram Eldar, Feb 16 2023 *)
A246507
a(n) = 70*(n+1)*binomial(2*n+1,n+1)/(n+5).
Original entry on oeis.org
14, 70, 300, 1225, 4900, 19404, 76440, 300300, 1178100, 4618900, 18106088, 70984095, 278369000, 1092063000, 4286142000, 16830250920, 66118842900, 259878874500, 1021939149000, 4020523757250, 15824781508536, 62313700079400, 245478212434000, 967428110493000, 3814113125277000
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Benoît Collins, James A. Mingo, Piotr Śniady, and Roland Speicher, Second order freeness and fluctuations of random matrices. III: Higher order freeness and free cumulants, Documenta Mathematica 12 (2007), 1-70.
- James A. Mingo and Alexandru Nica, Annular noncrossing permutations and partitions, and second-order asymptotics for random matrices, International Mathematics Research Notices, Vol. 2004, No. 28 (2004), pp. 1413-1460; arXiv preprint, arXiv:math/0303312 [math.OA], 2003.
-
[70*(n+1)*Binomial(2*n+1,n+1)/(n+5): n in [0..30]]; // Vincenzo Librandi, Aug 29 2014
-
Table[70 (n+1) Binomial[2 n + 1, n + 1]/(n + 5), {n, 0, 30}] (* Vincenzo Librandi, Aug 29 2014 *)
-
for(n=0,25, print1(70*(n+1)*binomial(2*n+1,n+1)/(n+5), ", ")) \\ G. C. Greubel, Apr 06 2017
Showing 1-3 of 3 results.
Comments