A174319 Number of n-step walks on cubic lattice (no points repeated, no adjacent points unless consecutive in path).
1, 6, 30, 126, 534, 2214, 9246, 38142, 157974, 649086, 2675022, 10966470, 45054630, 184400910, 755930958, 3089851782, 12645783414, 51635728518, 211059485310, 861083848998, 3516072837894, 14334995983614, 58485689950254
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- M. E. Fisher and B. J. Hiley, Configuration and free energy of a polymer molecule with solvent interaction, J. Chem. Phys., 34 (1961), 1253-1267.
- A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108.
Formula
a(n) = 6 + 24*A038746(n) + 48*A038748(n) for n >= 1. (It follows from Eq. (5), p. 1090, in Nemirovsky et al. (1992).) - Petros Hadjicostas, Jan 01 2019
Extensions
a(16)-a(22) from Bert Dobbelaere, Jan 03 2019
Comments