cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A038776 The sequence a[1] to a[ cat[n] ] is the permutation that converts forest[n] of depth-first planar planted binary trees into breadth-first representation.

Original entry on oeis.org

1, 2, 4, 5, 3, 9, 10, 13, 14, 12, 6, 7, 8, 11, 23, 24, 27, 28, 26, 36, 37, 41, 42, 40, 32, 33, 35, 39, 15, 16, 18, 19, 17, 22, 25, 20, 21, 34, 38, 29, 30, 31, 65, 66, 69, 70, 68, 78, 79, 83, 84, 82, 74, 75, 77, 81, 106, 107, 111, 112, 110, 125, 126, 131, 132, 130
Offset: 1

Views

Author

Wouter Meeussen, May 04 2000

Keywords

Examples

			tree ( 1 (100) (10 ) ) becomes (1) (11)(00 0 ) thus (1 (1(100) 0) ) and is permuted from position 3 in forest[3] to position 5 by permutation {1,2,4,5,3}={{1},{2},{4,5,3}}
		

Crossrefs

Compare to the plot of A082364 and A072619.
Inverse of A070041. Cf. also A038774, A038775. If "expanded" produces A057117. Max cycle lengths: A057542.

Programs

  • Maple
    [seq(CatalanRank(inf,(btbf2df(binrev(CatalanUnrank(inf,j)),0,1)/2))+1,j=0..(binomial(2*inf,inf)/(inf+1))-1)]; (In practice, use a value like 6 instead of infinity).
    btbf2df := proc(nn,i,r) local n,j,c,x,y,w; n := nn; if(0 = (n mod 2)) then RETURN(0); fi; c := i; for j from 1 to r do c := c + (n mod 2); n := floor(n/2); od; w := 2*c; c := 0; for j from 1 to (2*i) do c := c + (n mod 2); n := floor(n/2); od; x := btbf2df(n,c,(w-(j-1))); y := btbf2df(floor(n/2),c+(n mod 2),(w-(j))); RETURN((2^(binwidth(x)+binwidth(y))) + (x * (2^(binwidth(y)))) + y); end;
    floor_log_2 := proc(n) local nn,i: nn := n; for i from -1 to n do if(0 = nn) then RETURN(i); fi: nn := floor(nn/2); od: end:
    binwidth := n -> (`if`((0 = n),1,floor_log_2(n)+1));
    binrev := proc(nn) local n,z; n := nn; z := 0; while(n <> 0) do z := 2*z + (n mod 2); n := floor(n/2); od; RETURN(z); end;
  • Mathematica
    bracket[ tree_ ] := (Flatten[ {tree, 0} ]/. 0->{0})//.{1, z___, 1, a_List, b_List, y___}:>{1, z, {1, a, b}, y}; widthfirst[ dectree_ ] := b2d[ Drop[ Flatten[ {Table[ Cases[ Level[ #, {k}, z ], A014486%20*)%20Ordering%5BReverse%5Bwidthfirst%20/@%20b2d%20/@%20wood%5B6%5D%5D%5D%20(*%20_Wouter%20Meeussen">Integer ], {k, Depth[ # ]-1} ] }/.z->List ], -1 ] ] & @(bracket@d2b[ dectree ]); (* uses functions in A014486 *) Ordering[Reverse[widthfirst /@ b2d /@ wood[6]]] (* _Wouter Meeussen, Aug 19 2025 *)

Extensions

Additional comments from Antti Karttunen, Aug 11 2000

A057542 Maximum cycle length in each permutation between A038776(1) and A038776(A000108(n)).

Original entry on oeis.org

1, 1, 1, 3, 4, 16, 87, 202, 607, 1441, 4708, 41888, 44741, 339108, 1617551
Offset: 0

Views

Author

Antti Karttunen, Sep 07 2000

Keywords

Crossrefs

Cycle lengths of permutation A038776 given in A038774.
LCM's of all cycles: A060113.

Programs

  • Maple
    map(lmax,Bf2DfBinTreePermutationCycleLengths(some_value)); (e.g. 10)
    bf2df := s -> (btbf2df(binrev(s),0,1)/2); # btbf2df and binrev given in A038776
    Bf2DfBinTreePermutationCycleLengths := proc(upto_n) local u,n,a,r,b; a := []; for n from 0 to upto_n do b := []; u := (binomial(2*n,n)/(n+1)); for r from 0 to u-1 do b := [op(b),1+CatalanRank(n,bf2df(CatalanUnrank(n,r)))]; od; a := [op(a),CycleLengths1(b)]; od; RETURN(a); end;
    CycleLengths1 := b -> [[(nops(b)-convert(map(nops,convert(b,'disjcyc')),`+`)),`*`,1],op(map(nops,convert(b,'disjcyc')))];
    last_term := proc(l) local n: n := nops(l); if(0 = n) then ([]) else (op(n,l)): fi: end:
    lmax := proc(a) local e,z; z := 0; for e in a do if whattype(e) = list then e := last_term(e); fi; if e > z then z := e; fi; od; RETURN(z); end;

Extensions

a(11)-a(14) from Sean A. Irvine, Jun 13 2022

A038775 a(n) is the number of cycles of the permutation that converts forest(n) of depth-first planar planted binary trees into breadth-first representation.

Original entry on oeis.org

1, 2, 3, 6, 10, 12, 17, 26, 34, 50, 56, 68, 82, 94, 113
Offset: 1

Views

Author

Wouter Meeussen, May 04 2000

Keywords

Comments

The first a(n) terms of A038774 add up to Catalan(n) = A000108(n).

Examples

			a(5)=10 since there are 10 cycles in this permutation of forest(5), with lengths 1, 1, 3, 4, 3, 2, 16, 8, 2, 2 summing up to 42=Catalan(5).
		

Crossrefs

Similarly generated sequences: A001683, A002995, A003239, A057507, A057513.

Extensions

a(13)-a(15) from Sean A. Irvine, May 22 2022
Showing 1-3 of 3 results.