A038802 Factor 2n+1 = (2^m1)*(3^m2)*(5^m3)*...; a(n) = number of initial zero exponents.
1, 2, 3, 1, 4, 5, 1, 6, 7, 1, 8, 2, 1, 9, 10, 1, 2, 11, 1, 12, 13, 1, 14, 3, 1, 15, 2, 1, 16, 17, 1, 2, 18, 1, 19, 20, 1, 3, 21, 1, 22, 2, 1, 23, 3, 1, 2, 24, 1, 25, 26, 1, 27, 28, 1, 29, 2, 1, 3, 4, 1, 2, 30, 1, 31, 3, 1, 32, 33, 1, 4, 2, 1, 34, 35, 1, 2, 36
Offset: 1
Keywords
Examples
9 = (2^0)*(3^2), thus a(4) = 1.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A038802 := proc(n) numtheory[factorset](2*n+1) ; min(%); numtheory[pi](%)-1 ; end proc: # R. J. Mathar, Mar 01 2011
-
Mathematica
Table[f = FactorInteger[2 n + 1]; PrimePi[f[[1, 1]]] - 1, {n, 100}] (* T. D. Noe, Apr 23 2013 *)
-
PARI
lpf(n)=factor(n)[1,1] a(n)=primepi(lpf(2*n+1))-1 \\ Charles R Greathouse IV, Jul 29 2016
Formula
Extensions
a(69) corrected by Rick G. Rosner, Apr 22 2013