cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Thomas Kellar

Thomas Kellar's wiki page.

Thomas Kellar has authored 6 sequences.

A175907 Known friendly squarefree numbers.

Original entry on oeis.org

6, 30, 42, 66, 78, 102, 114, 138, 174, 186, 210, 222, 246, 258, 273, 282, 318, 330, 354, 366, 390, 402, 426, 438, 462, 474, 498, 510, 534, 546, 570, 582, 606, 618, 642, 654, 678, 690, 714, 762, 786, 798, 806, 822, 834, 858, 870, 894, 906, 930, 942, 966, 978, 1002, 1038
Offset: 1

Author

Thomas Kellar, Oct 14 2010, Oct 15 2010

Keywords

Comments

From Walter Nissen, May 28 2011: (Start)
As with most aspects of friendly and solitary numbers, this sequence is not known to be complete. A friend could possibly be found for 10, for example; same doubtful status as an odd perfect number.
Note that not all friendly numbers will be found among the primitive friendly numbers listed in link "Primitive Friendly Pairs", and this would be true even if those were not limited to small examples.
Other terms are 1330, 1995, and 49166.
(End)

Examples

			6, being 2 * 3, is squarefree. Having abundancy = 2, 6 is friendly with all the other perfect numbers. Ergo, it is in the sequence. ( 1 ), 2, 3, and 5, being prime powers, are solitary. 4 is a square. Ergo, a(1) is 6.
		

References

  • Oystein Ore, Number Theory and Its History, McGraw-Hill, 1948, reprinted 1988, section 5-3, pp. 96-100.

Crossrefs

Cf. A005117, A014567, A074902 (known friendly numbers), A095751, A096366, A140688.

Programs

  • PARI
    { for (j=1,2000, if (issquarefree(j), t=sigma(j)/j; for (i=1,1000000, p=sigma(i)/i; if(p == t && j != i, print(j," ",i); ); ); ); ); quit; } \\ provides useful suggestions, but not definitive, Walter Nissen, May 28 2011

Extensions

Added 273 as it is friendly with 2876211; 273 is a counterexample to the conjecture that 6 divides a(n). - Walter Nissen, May 28 2011
Added 806 as it is friendly with 2449562488893. - Suyash Pandit, Jan 24 2024

A180617 Sum of divisors of the product of two consecutive primes.

Original entry on oeis.org

12, 24, 48, 96, 168, 252, 360, 480, 720, 960, 1216, 1596, 1848, 2112, 2592, 3240, 3720, 4216, 4896, 5328, 5920, 6720, 7560, 8820, 9996, 10608, 11232, 11880, 12540, 14592, 16896, 18216, 19320, 21000, 22800, 24016, 25912, 27552, 29232, 31320, 32760, 34944, 37248, 38412
Offset: 1

Author

Thomas Kellar, Sep 12 2010

Keywords

Examples

			a(1) = sigma(2*3) = 12, a(2) = sigma(3*5) = 24.
		

Crossrefs

A distant relative of A054640.

Programs

  • Magma
    [(1+NthPrime(n))*(1+NthPrime(n+1)): n in [1..50]]; // Vincenzo Librandi, Feb 16 2015
  • Mathematica
    DivisorSigma[1,#]&/@(Times@@@Partition[Prime[Range[50]],2,1]) (* Harvey P. Dale, Apr 04 2015 *)
    Table[Prime[n]*Prime[n+1]+Prime[n]+Prime[n+1]+1,{n,1,30}] (* Metin Sariyar, Dec 08 2019 *)
  • PARI
    for (n=1,10, i=prod(x=n,n+1,prime(x)); p=sigma(i); print1(p, ", "); )
    
  • PARI
    a(n)=my(p=prime(n)); (p+1)*(nextprime(p+1)+1) \\ Charles R Greathouse IV, Feb 16 2015
    

Formula

a(n) = A000203(A006094(n)). - Omar E. Pol, Dec 08 2019
a(n) = A006094(n) + A001043(n) + 1. - Metin Sariyar, Dec 08 2019
a(n) = A126199(n) + 1 (after above formula). - Omar E. Pol, Dec 08 2019

Extensions

More terms from Vincenzo Librandi, Feb 16 2015
Name simplified by Omar E. Pol, Dec 08 2019

A038802 Factor 2n+1 = (2^m1)*(3^m2)*(5^m3)*...; a(n) = number of initial zero exponents.

Original entry on oeis.org

1, 2, 3, 1, 4, 5, 1, 6, 7, 1, 8, 2, 1, 9, 10, 1, 2, 11, 1, 12, 13, 1, 14, 3, 1, 15, 2, 1, 16, 17, 1, 2, 18, 1, 19, 20, 1, 3, 21, 1, 22, 2, 1, 23, 3, 1, 2, 24, 1, 25, 26, 1, 27, 28, 1, 29, 2, 1, 3, 4, 1, 2, 30, 1, 31, 3, 1, 32, 33, 1, 4, 2, 1, 34, 35, 1, 2, 36
Offset: 1

Author

Keywords

Examples

			9 = (2^0)*(3^2), thus a(4) = 1.
		

Programs

  • Maple
    A038802 := proc(n) numtheory[factorset](2*n+1) ; min(%); numtheory[pi](%)-1 ; end proc: # R. J. Mathar, Mar 01 2011
  • Mathematica
    Table[f = FactorInteger[2 n + 1]; PrimePi[f[[1, 1]]] - 1, {n, 100}] (* T. D. Noe, Apr 23 2013 *)
  • PARI
    lpf(n)=factor(n)[1,1]
    a(n)=primepi(lpf(2*n+1))-1 \\ Charles R Greathouse IV, Jul 29 2016

Formula

a(n) = A049084(A020639(2n+1))-1. - R. J. Mathar, Mar 01 2011

Extensions

a(69) corrected by Rick G. Rosner, Apr 22 2013

A045536 Primes p such that p+2 and 2p+1 are also prime.

Original entry on oeis.org

3, 5, 11, 29, 41, 179, 191, 239, 281, 419, 431, 641, 659, 809, 1019, 1031, 1049, 1229, 1289, 1451, 1481, 1931, 2129, 2141, 2339, 2549, 2969, 3299, 3329, 3359, 3389, 3539, 3821, 3851, 4019, 4271, 4481, 5231, 5279, 5441, 5501, 5639, 5741, 5849, 6131
Offset: 1

Author

Keywords

Comments

Intersection of A001359 and A005384. - Zak Seidov, Feb 28 2017

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(6200) | IsPrime(p+2) and IsPrime(2*p+1)]; // Vincenzo Librandi, Apr 08 2013
    
  • Maple
    select(t -> isprime(t) and isprime(t+2) and isprime(2*t+1), [3, seq(t,t=5..10000,6)]); # Robert Israel, Feb 28 2017
  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[#+2] && PrimeQ[2#+1]&] (* Vladimir Joseph Stephan Orlovsky, Mar 30 2011*)
  • PARI
    is(n)=isprime(n) && isprime(n+2) && isprime(2*n+1) \\ Charles R Greathouse IV, Feb 25 2014

Extensions

Corrected by Jud McCranie, Dec 30 2000
Name changed and incorrect comment and program removed by T. D. Noe, Aug 05 2010

A049472 a(n) = floor(n/sqrt(2)).

Original entry on oeis.org

0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 9, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 19, 19, 20, 21, 21, 22, 23, 24, 24, 25, 26, 26, 27, 28, 28, 29, 30, 31, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, 38, 39, 40, 41, 41, 42, 43, 43, 44, 45, 45, 46, 47
Offset: 0

Author

Keywords

Comments

For n > 0: A006337(n) = number of repeating n's. - Reinhard Zumkeller, Jul 04 2015

Crossrefs

First differences give A080764.

Programs

A038869 Primes p such that both p-2 and 2p-1 are prime.

Original entry on oeis.org

7, 19, 31, 139, 199, 229, 271, 601, 619, 661, 811, 829, 1279, 1429, 1609, 2029, 2089, 2131, 2311, 2551, 2791, 3169, 3331, 3391, 3529, 3769, 4051, 4159, 4231, 4261, 4339, 4639, 4801, 5419, 5479, 5659, 5851, 6271, 6301, 6361, 6691, 6961, 7561, 7951, 8539
Offset: 1

Author

Keywords

Comments

Primes p such that A(2*p) - 3*A(p) = 3 (7, 31, 661, 811, 2551, ...) and primes p such that 7*A(p) - A(2*p) = 21 (19, 139, 619, 1429, ...), where A=A288814, are both subsequences of A038869. - David James Sycamore, Aug 07 2017

Crossrefs

Programs

  • Magma
    [n: n in [0..10000]|IsPrime(n) and IsPrime(n-2) and IsPrime(2*n-1)]; // Vincenzo Librandi, Dec 18 2010
    
  • Mathematica
    Transpose[Select[Partition[Prime[Range[1200]],2,1],#[[2]]-#[[1]]==2 && PrimeQ[2#[[2]]-1]&]][[2]] (* Harvey P. Dale, Jun 19 2014 *)
  • PARI
    is(n)=n%6==1 && isprime(n-2) && isprime(n) && isprime(2*n-1) \\ Charles R Greathouse IV, Aug 09 2017