cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A126199 a(n) = prime(n)*prime(n+1) + prime(n) + prime(n+1).

Original entry on oeis.org

11, 23, 47, 95, 167, 251, 359, 479, 719, 959, 1215, 1595, 1847, 2111, 2591, 3239, 3719, 4215, 4895, 5327, 5919, 6719, 7559, 8819, 9995, 10607, 11231, 11879, 12539, 14591, 16895, 18215, 19319, 20999, 22799, 24015, 25911, 27551, 29231, 31319, 32759
Offset: 1

Views

Author

Jonathan Vos Post, Mar 08 2007

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{p = Prime[n], q = Prime[n + 1]}, p*q + p + q]; Array[f, 42] (* Robert G. Wilson v, Mar 09 2007 *)
    Times@@#+Total[#]&/@Partition[Prime[Range[50]],2,1] (* Harvey P. Dale, Nov 01 2017 *)

Formula

a(n) = A180617(n) - 1. - Omar E. Pol, Dec 08 2019

Extensions

More terms from Robert G. Wilson v, Mar 09 2007

A309772 Least common multiple of prime(n+1)+1 and prime(n)+1.

Original entry on oeis.org

12, 12, 24, 24, 84, 126, 180, 120, 120, 480, 608, 798, 924, 528, 432, 540, 1860, 2108, 1224, 2664, 2960, 1680, 1260, 4410, 4998, 5304, 2808, 5940, 6270, 7296, 4224, 3036, 9660, 2100, 11400, 12008, 12956, 6888, 4872, 5220, 16380, 17472, 18624, 19206, 19800, 10600
Offset: 1

Views

Author

Daniel Hoyt, Aug 16 2019

Keywords

Comments

a(n) = (prime(n)+1)*(prime(n+1)+1)/2 if n is in A066940. - Robert Israel, Aug 16 2019

Crossrefs

Cf. A008864, A063086 (gcd), A066940, A180617 (product).

Programs

  • Magma
    [Lcm(1+NthPrime(n),1+NthPrime(n+1)):n in [1..50]]; // Marius A. Burtea, Aug 16 2019
  • Maple
    P:= [seq(ithprime(i),i=1..100)]:
    seq(ilcm(P[i]+1,P[i+1]+1),i=1..99); # Robert Israel, Aug 16 2019
  • Mathematica
    Array[LCM[Prime[#] + 1, Prime[# + 1] + 1] &, 50] (* Amiram Eldar, Aug 16 2019 *)

Formula

a(n) = lcm(A008864(n+1), A008864(n)) = lcm(prime(n+1)+1, prime(n)+1).

A345727 a(n) = (prime(n)+1) * prime(n+1).

Original entry on oeis.org

9, 20, 42, 88, 156, 238, 342, 460, 696, 930, 1184, 1558, 1806, 2068, 2544, 3186, 3660, 4154, 4828, 5256, 5846, 6640, 7476, 8730, 9898, 10506, 11128, 11772, 12430, 14478, 16768, 18084, 19182, 20860, 22650, 23864, 25754, 27388, 29064, 31146, 32580, 34762
Offset: 1

Views

Author

Simon Strandgaard, Jul 20 2021

Keywords

Examples

			a(1) = (prime(1)+1) * prime(2) = 3 *  3 =  9,
a(2) = (prime(2)+1) * prime(3) = 4 *  5 = 20,
a(3) = (prime(3)+1) * prime(4) = 6 *  7 = 42,
a(4) = (prime(4)+1) * prime(5) = 8 * 11 = 88.
		

Crossrefs

Programs

  • Maple
    A345727 := proc(n)
        (ithprime(n)+1)*ithprime(n+1) ;
    end proc:
    seq(A345727(n),n=1..10) ; # R. J. Mathar, Aug 16 2021
  • Mathematica
    (Prime@#+1)Prime[#+1]&/@Range@50 (* Giorgos Kalogeropoulos, Jul 23 2021 *)
    (#[[1]]+1)#[[2]]&/@Partition[Prime[Range[50]],2,1] (* Harvey P. Dale, Jan 08 2023 *)
  • PARI
    for(n=1, 100, print1((prime(n)+1)*prime(n+1), ", "))
    
  • Ruby
    require 'prime'
    values = []
    primes = Prime.first(20)
    primes.each_index do |n|
        next if n < 1
        values << (primes[n - 1] + 1) * primes[n]
    end
    p values

Formula

a(n) = A008864(n)*A000040(n+1).
a(n) = A180617(n)-A008864(n).
a(n) = A006094(n)+A000040(n+1).
Showing 1-3 of 3 results.