A166533 Numbers whose cube is a concatenation of exactly three primes (leading zeros allowed).
13, 15, 18, 29, 33, 38, 39, 43, 45, 48, 55, 59, 63, 68, 73, 83, 91, 95, 98, 103, 108, 111, 117, 125, 131, 137, 148, 149, 161, 163, 171, 173, 175, 177, 179, 217, 233, 235, 237, 241, 258, 259, 275, 278, 289, 293, 295, 297, 321, 337, 339, 357, 377, 378, 388, 391
Offset: 1
Examples
13^3 = 2197 => { 2, 19, 7}; 15^3 = 3375 => { 3, 37, 5}; 18^3 = 5832 => { 5, 83, 2}; 43^3 = 79507 => {79, 5, 07} (first case with leading zero); 48^3 = 110592 => {11, 059, 2} (next case with leading zero).
Crossrefs
Programs
-
Mathematica
s={};Do[id=IntegerDigits[n^3];Le=Length@id; Do[t=FromDigits/@{Take[id,k],Take[id,{k+1,m}],Take[id,m-Le]}; If[PrimeQ[t]=={True,True,True},AppendTo[s,n];Goto[ne]],{k,Le-2},{m,k+1,Le-1}];Label[ne],{n,5,800}];s
Extensions
Edited by Charles R Greathouse IV, Mar 23 2010
Comments