cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A039646 Third column of Jabotinsky-triangle A038455 related to A006963.

Original entry on oeis.org

1, 18, 335, 7155, 176554, 4985316, 159168428, 5681708100, 224518859136, 9737714177928, 460132506980640, 23537198603711520, 1296157111841533824, 76467514565810332800, 4812260962479036076800, 321826321845522830649600
Offset: 0

Views

Author

Keywords

Comments

Explicit formula for a(n-3) using partitions of n into 3 parts: cf. Knuth's paper for f(n,3) n >= 3, formula with f(k) := A006963(k+1) = (2*k-1)!/k!, k >= 1.

Crossrefs

Programs

  • Mathematica
    Drop[With[{nmax = 20}, CoefficientList[Series[Log[(1 - Sqrt[1 - 4*x])/x/2]^3/6, {x, 0, nmax}], x]*Range[0, nmax]!], 3] (* G. C. Greubel, Dec 14 2017 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(log((1-sqrt(1-4*x))/x/2)^3/6)) \\ G. C. Greubel, Dec 14 2017

Formula

a(n) = Sum_{j=0..n} binomial(n+2, j)*A006936(j+2)*A039619(n+2-j).
E.g.f.: log((1-sqrt(1-4*x))/x/2)^3/6. - Vladeta Jovovic, May 02 2003