A039650 Prime reached by iterating f(x) = phi(x)+1 on n.
2, 2, 3, 3, 5, 3, 7, 5, 7, 5, 11, 5, 13, 7, 7, 7, 17, 7, 19, 7, 13, 11, 23, 7, 13, 13, 19, 13, 29, 7, 31, 17, 13, 17, 13, 13, 37, 19, 13, 17, 41, 13, 43, 13, 13, 23, 47, 17, 43, 13, 13, 13, 53, 19, 41, 13, 37, 29, 59, 17, 61, 31, 37, 13, 43, 13, 67, 13, 13, 13, 71, 13, 73, 37, 41
Offset: 1
Keywords
Examples
s(24,1) = 24, s(24,2) = 1 + phi(24) = 1 + 8 = 9, s(24,3) = 1 + phi(9) = 1 + 6 = 7, s(24,4) = 1 + phi(7) = 1 + 6 = 7,.... Therefore a(24) = lim_k {s(24,k)} = 7.
References
- Alexander S. Karpenko, Lukasiewicz Logics and Prime Numbers, Luniver Press, Beckington, 2006, p. 51.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A039650 := proc(n) local nitr,niitr ; niitr := n ; while true do: nitr := 1+numtheory[phi](niitr) ; if nitr = niitr then return nitr ; end if; niitr := nitr ; end do: end proc: seq(A039650(n),n=1..40) ; # R. J. Mathar, Dec 11 2019
-
Mathematica
f[n_] := FixedPoint[1 + EulerPhi[ # ] &, n]; Table[ f[n], {n, 1, 75}]
Comments