cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A039654 a(n) = prime reached by iterating f(x) = sigma(x)-1 starting at n, or -1 if no prime is ever reached.

Original entry on oeis.org

2, 3, 11, 5, 11, 7, 23, 71, 17, 11, 71, 13, 23, 23, 71, 17, 59, 19, 41, 31, 47, 23, 59, 71, 41, 71, 71, 29, 71, 31, 167, 47, 53, 47, 233, 37, 59, 71, 89, 41, 167, 43, 83, 167, 71, 47, 167, 167, 167, 71, 97, 53, 167, 71, 167, 79, 89, 59, 167, 61, 167, 103, 311, 83, 167, 67
Offset: 2

Views

Author

Keywords

Comments

It appears nearly certain that a prime is always reached for n>1.
Since sigma(n) > n for n > 1, and sigma(n) = n + 1 only for n prime, the iteration either reaches a prime and loops there, or grows indefinitely. - Franklin T. Adams-Watters, May 10 2010
Guy (2004) attributes this conjecture to Erdos. See Erdos et al. (1990). - N. J. A. Sloane, Aug 30 2017

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B41, p. 149.

Crossrefs

Cf. A039655 (the number of steps needed), A039649, A039650, A039651, A039652, A039653, A039656, A291301, A291302, A291776, A291777.
For records see A292112, A292113.
Cf. A177343: number of times the n-th prime occurs in this sequence.
Cf. A292874: least k such that a(k) = prime(n).

Programs

Extensions

Contingency for no prime reached added by Franklin T. Adams-Watters, May 10 2010
Changed escape value from 0 to -1 to be consistent with several related sequences. - N. J. A. Sloane, Aug 31 2017