A039654 a(n) = prime reached by iterating f(x) = sigma(x)-1 starting at n, or -1 if no prime is ever reached.
2, 3, 11, 5, 11, 7, 23, 71, 17, 11, 71, 13, 23, 23, 71, 17, 59, 19, 41, 31, 47, 23, 59, 71, 41, 71, 71, 29, 71, 31, 167, 47, 53, 47, 233, 37, 59, 71, 89, 41, 167, 43, 83, 167, 71, 47, 167, 167, 167, 71, 97, 53, 167, 71, 167, 79, 89, 59, 167, 61, 167, 103, 311, 83, 167, 67
Offset: 2
Keywords
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B41, p. 149.
Links
- Franklin T. Adams-Watters, Table of n, a(n) for n=2..10000
- Lucilla Baldini and Josef Eschgfäller, Random functions from coupled dynamical systems, arXiv preprint arXiv:1609.01750 [math.CO], 2016. Mentions the conjecture.
- Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204.
- Paul Erdos, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204. [Annotated copy with A-numbers]
- Math Overflow discussion, Does iterating a certain function related to the sums of divisors eventually always result in a prime value?
- N. J. A. Sloane, Three (No, 8) Lovely Problems from the OEIS, Experimental Mathematics Seminar, Rutgers University, Oct 05 2017, Part I, Part 2, Slides. (Mentions this sequence)
Crossrefs
Programs
-
Mathematica
f[n_]:=Plus@@Divisors[n]-1;Table[Nest[f,n,6],{n,2,5!}] (* Vladimir Joseph Stephan Orlovsky, Mar 10 2010 *) f[n_] := DivisorSigma[1,n]-1; Table[FixedPoint[f,n], {n,2,100}] (* T. D. Noe, May 10 2010 *)
-
PARI
a(n)=local(m);if(n<2,0,while((m=sigma(n)-1)!=n,n=m);n) \\ Franklin T. Adams-Watters, May 10 2010
-
PARI
A039654(n)=n>1&&until(n==n=sigma(n)-1,);n \\ M. F. Hasler, Sep 25 2017
Extensions
Contingency for no prime reached added by Franklin T. Adams-Watters, May 10 2010
Changed escape value from 0 to -1 to be consistent with several related sequences. - N. J. A. Sloane, Aug 31 2017
Comments