cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A030532 Number of polyhexes of class PF2 with symmetry point group C_s.

Original entry on oeis.org

0, 1, 6, 35, 168, 807, 3738, 17326, 79909, 369330, 1709087, 7929590, 36880231, 171981241, 804008476, 3767969067, 17699758030, 83328230588, 393123455667, 1858351021018, 8801159427825, 41756067216508, 198437454009869, 944521139813575, 4502419756667924
Offset: 4

Views

Author

Keywords

Comments

See reference for precise definition.
Cyvin has incorrect a(13)=369366 and a(14)=1709123 in Table III due to using incorrect values for A026298(13) and A026298(14) in Table II.

Crossrefs

Programs

  • PARI
    L(n) = my(x = 'x + O('x^(n+4))); polcoeff((1+x)*(1-3*x^2-sqrt(1-6*x^2+5*x^4))/(2*x^2*(1-x)), n); \\ A039658
    Lp(n) = my(x = 'x + O('x^(n+4))); polcoeff((1+x)*(1-6*x^2+7*x^4-(1-3*x^2)*sqrt(1-6*x^2+5*x^4))/(2*x^4*(1-x)), n); \\ A039660
    M(n)= my(A); if( n<1, 0, n--; A = O(x); for( k = 0, n\2, A = 1 / (1 - x - x^2 / (1 + x - x^2 * A))); polcoeff( A, n)); \\ A055879
    N(n) = polcoeff( (1 - x - sqrt(1 - 6*x + 5*x^2 + x^2 * O(x^n))) / 2, n+1); \\ A002212
    Mp(n) = N(n) - sum(j=0, n-1, N(j)); \\ A039919
    b(n) = N(n+3) - 6*N(n+2) - Mp(floor((n+1)/2)) + (41*N(n+1)-21*N(n)-L(n))/4 - (M(n+3)-M(n+2)+M(n)-if (!(n%2),M(n/2))+Lp(n))/2;
    a(n) = if (n<=4, 0, b(n-4)); \\ Michel Marcus, Apr 05 2020

Formula

a(n+4) = N(n+3) - 6*N(n+2) - M'(floor((n+1)/2)) + (41*N(n+1)-21*N(n)-L(n))/4 - (M(n+3)-M(n+2)+M(n)-e(n)*M(n/2)+L'(n))/2 where N(n)=A002212(n), M(n)=A055879(n), M'(n)=A039919(n), L(n)=A039658(n), L'(n)=A039660(n), e(n)=1 if n is even and 0 if n is odd. - Sean A. Irvine, Apr 03 2020

Extensions

a(13) and a(14) corrected, title improved, and more terms from Sean A. Irvine, Apr 03 2020

A030519 Number of polyhexes of class PF2 with four catafusenes annealated to pyrene.

Original entry on oeis.org

2, 13, 101, 619, 3641, 20028, 106812, 554352, 2828660, 14244878, 71077246, 352184306, 1736118578, 8525182798, 41741378126, 203929434766, 994680883360, 4845761306611, 23586192274443, 114731539477465, 557859497501007, 2711772157178038, 13180227306740726
Offset: 8

Views

Author

Keywords

Comments

See reference for precise definition.

Crossrefs

Programs

  • PARI
    Lp(n)=my(x = 'x + O('x^(n+4))); polcoeff((1+x)*(1-6*x^2+7*x^4-(1-3*x^2)*sqrt(1-6*x^2+5*x^4))/(2*x^4*(1-x)), n); \\ A039660
    M(n)= my(A); if( n<1, 0, n--; A = O(x); for( k = 0, n\2, A = 1 / (1 - x - x^2 / (1 + x - x^2 * A))); polcoeff( A, n)); \\ A055879
    N(n) = polcoeff( (1 - x - sqrt(1 - 6*x + 5*x^2 + x^2 * O(x^n))) / 2, n+1); \\ A002212
    b(n) = N(n+3) - 9*N(n+2) + 25*N(n+1) - 21*N(n) + (M(n+3) - M(n+2) - 3*M(n+1) + 3*M(n) + Lp(n))/2;
    a(n) = b(n-4); \\ Michel Marcus, Apr 03 2020

Formula

a(n+4) = N(n+3) - 9*N(n+2) + 25*N(n+1) - 21*N(n) + (M(n+3) - M(n+2) - 3*M(n+1) + 3*M(n) + L'(n))/2 where N(n)=A002212(n), M(n)=A055879(n), and L'(n)=A039660(n) for n >= 4. - Sean A. Irvine, Apr 02 2020

Extensions

More terms and title improved by Sean A. Irvine, Apr 02 2020

A045905 Catafusenes (see reference for precise definition).

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 16, 80, 473, 2517, 13431, 69357, 353943, 1780894, 8886254, 44024308, 217021967, 1065653519, 5217704239, 25491204743, 124335254416, 605720277647, 2948274685881, 14341442951945, 69732440151924
Offset: 0

Views

Author

Keywords

References

  • S. J. Cyvin et al., Enumeration and classification of certain polygonal systems... : annelated catafusenes, J. Chem. Inform. Comput. Sci., 34 (1994), 1174-1180, ^4O = ^4F_7 page 1178.

Crossrefs

Last column of A121178.

Formula

8*a(n) = A045829(n) + 3*A045445(n/2) + 2*A002212(n/4) + 2*A039660(n) for n > 0, where sequence values with non-integer index are implicitly defined as 0. - R. J. Mathar, Jul 30 2019
Showing 1-3 of 3 results.