A039692 Jabotinsky-triangle related to A039647.
1, 3, 1, 8, 9, 1, 42, 59, 18, 1, 264, 450, 215, 30, 1, 2160, 4114, 2475, 565, 45, 1, 20880, 43512, 30814, 9345, 1225, 63, 1, 236880, 528492, 420756, 154609, 27720, 2338, 84, 1, 3064320, 7235568, 6316316, 2673972, 594489, 69552, 4074, 108, 1
Offset: 1
Examples
1; 3, 1; 8, 9, 1; 42, 59, 18, 1; 264, 450, 215, 30, 1;
Links
- Vincenzo Librandi, Rows n = 1..50, flattened
- D. E. Knuth, Convolution polynomials, Mathematica J. 2.1 (1992), no. 4, 67-78.
- Peter Luschny, The Bell transform
Programs
-
Maple
A000032 := proc(n) option remember; coeftayl( (2-x)/(1-x-x^2),x=0,n) ; end: A039647 := proc(n) (n-1)!*A000032(n) ; end: A039692 := proc(n,m) option remember ; if m = 1 then A039647(n) ; else add( binomial(n-1,j-1)*A039647(j)*procname(n-j,m-1),j=1..n-m+1) ; fi; end: # R. J. Mathar, Jun 01 2009
-
Mathematica
t[n_, m_] := n!*Sum[StirlingS1[k, m]*Binomial[k, n-k]*(-1)^(k+m)/k!, {k, m, n}]; Table[t[n, m], {n, 1, 9}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 21 2013, after Vladimir Kruchinin *)
-
Maxima
T(n,m) := n!*sum((stirling1(k,m)*binomial(k,n-k))*(-1)^(k+m)/k!,k,m,n); /* Vladimir Kruchinin, Mar 26 2013 */
-
PARI
T(n,m) = n!*sum(k=m,n, (stirling(k,m,1)*binomial(k,n-k))*(-1)^(k+m)/k!); for(n=1,10,for(k=1,n,print1(T(n,k),", "));print()); /* Joerg Arndt, Mar 27 2013 */
-
Sage
# uses[bell_matrix from A264428] # Adds 1,0,0,0, ... as column 0 to the left side of the triangle. bell_matrix(lambda n: factorial(n)*(fibonacci(n)+fibonacci(n+2)), 8) # Peter Luschny, Jan 16 2016
Formula
a(n, 1)= A039647(n)=(n-1)!*L(n), L(n) := A000032(n) (Lucas); a(n, m) = Sum_{j=1..n-m+1} binomial(n-1, j-1)*A039647(j)*a(n-j, m-1), n >= m >= 2.
Conjectured row sums: sum_{m=1..n} a(n,m) = A005442(n). - R. J. Mathar, Jun 01 2009
T(n,m) = n! * Sum_{k=m..n} stirling1(k,m)*binomial(k,n-k)*(-1)^(k+m)/k!. - Vladimir Kruchinin, Mar 26 2013
Comments