cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A039929 Second column of Fibonacci Jabotinsky-triangle A039692.

Original entry on oeis.org

0, 1, 9, 59, 450, 4114, 43512, 528492, 7235568, 110499696, 1862118720, 34342356960, 688092312960, 14886351037440, 345878769358080, 8590707803462400, 227153424885811200, 6371121297516595200
Offset: 1

Views

Author

Keywords

Comments

E.g.f.: (log(1-x-x^2))^2/2.

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Log[1-x-x^2]^2/2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jun 11 2017 *)

Formula

a(n) = A039692(n, 2); a(n) = (n-1)!*sum(L(j)*L(n-j)/(n-j), j=1..n-1), n >= 2, L(n)= A000032(n) (Lucas).

A035342 The convolution matrix of the double factorial of odd numbers (A001147).

Original entry on oeis.org

1, 3, 1, 15, 9, 1, 105, 87, 18, 1, 945, 975, 285, 30, 1, 10395, 12645, 4680, 705, 45, 1, 135135, 187425, 82845, 15960, 1470, 63, 1, 2027025, 3133935, 1595790, 370125, 43890, 2730, 84, 1, 34459425, 58437855, 33453945, 8998290
Offset: 1

Views

Author

Keywords

Comments

Previous name was: A triangle of numbers related to the triangle A035324; generalization of Stirling numbers of second kind A008277 and Lah numbers A008297.
If one replaces in the recurrence the '2' by '0', resp. '1', one obtains the Lah-number, resp. Stirling-number of 2nd kind, triangle A008297, resp. A008277.
The product of two lower triangular Jabotinsky matrices (see A039692 for the Knuth 1992 reference) is again such a Jabotinsky matrix: J(n,m) = Sum_{j=m..n} J1(n,j)*J2(j,m). The e.g.f.s of the first columns of these triangular matrices are composed in the reversed order: f(x)=f2(f1(x)). With f1(x)=-(log(1-2*x))/2 for J1(n,m)=|A039683(n,m)| and f2(x)=exp(x)-1 for J2(n,m)=A008277(n,m) one has therefore f2(f1(x))=1/sqrt(1-2*x) - 1 = f(x) for J(n,m)=a(n,m). This proves the matrix product given below. The m-th column of a Jabotinsky matrix J(n,m) has e.g.f. (f(x)^m)/m!, m>=1.
a(n,m) gives the number of forests with m rooted ordered trees with n non-root vertices labeled in an organic way. Organic labeling means that the vertex labels along the (unique) path from the root with label 0 to any leaf (non-root vertex of degree 1) is increasing. Proof: first for m=1 then for m>=2 using the recurrence relation for a(n,m) given below. - Wolfdieter Lang, Aug 07 2007
Also the Bell transform of A001147(n+1) (adding 1,0,0,... as column 0). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016

Examples

			Matrix begins:
    1;
    3,   1;
   15,   9,   1;
  105,  87,  18,   1;
  945, 975, 285,  30,   1;
  ...
Combinatoric meaning of a(3,2)=9: The nine increasing path sequences for the three rooted ordered trees with leaves labeled with 1,2,3 and the root labels 0 are: {(0,3),[(0,1),(0,2)]}; {(0,3),[(0,2),(0,1)]}; {(0,3),(0,1,2)}; {(0,1),[(0,3),(0,2)]}; [(0,1),[(0,2),(0,3)]]; [(0,2),[(0,1),(0,3)]]; {(0,2),[(0,3),(0,1)]}; {(0,1),(0,2,3)}; {(0,2),(0,1,3)}.
		

Crossrefs

The column sequences are A001147, A035101, A035119, ...
Row sums: A049118(n), n >= 1.

Programs

  • Haskell
    a035342 n k = a035342_tabl !! (n-1) !! (k-1)
    a035342_row n = a035342_tabl !! (n-1)
    a035342_tabl = map fst $ iterate (\(xs, i) -> (zipWith (+)
       ([0] ++ xs) $ zipWith (*) [i..] (xs ++ [0]), i + 2)) ([1], 3)
    -- Reinhard Zumkeller, Mar 12 2014
    
  • Maple
    T := (n,k) -> 2^(k-n)*hypergeom([k-n,k+1],[k-2*n+1],2)*GAMMA(2*n-k)/
    (GAMMA(k)*GAMMA(n-k+1)); for n from 1 to 9 do seq(simplify(T(n,k)),k=1..n) od; # Peter Luschny, Mar 31 2015
    T := (n, k) -> local j; 2^n*add((-1)^(k-j)*binomial(k, j)*pochhammer(j/2, n), j = 1..k)/k!: for n from 1 to 6 do seq(T(n, k), k=1..n) od;  # Peter Luschny, Mar 04 2024
  • Mathematica
    a[n_, k_] := 2^(n+k)*n!/(4^n*n*k!)*Sum[(j+k)*2^(j)*Binomial[j + k - 1, k-1]*Binomial[2*n - j - k - 1, n-1], {j, 0, n-k}]; Flatten[Table[a[n,k], {n, 1, 9}, {k, 1, n}] ] [[1 ;; 40]] (* Jean-François Alcover, Jun 01 2011, after Vladimir Kruchinin *)
  • Maxima
    a(n,k):=2^(n+k)*n!/(4^n*n*k!)*sum((j+k)*2^(j)*binomial(j+k-1,k-1)*binomial(2*n-j-k-1,n-1),j,0,n-k); /* Vladimir Kruchinin, Mar 30 2011 */
    
  • Sage
    # uses[bell_matrix from A264428]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    print(bell_matrix(lambda n: A001147(n+1), 9)) # Peter Luschny, Jan 19 2016

Formula

a(n, m) = Sum_{j=m..n} |A039683(n, j)|*S2(j, m) (matrix product), with S2(j, m) := A008277(j, m) (Stirling2 triangle). Priv. comm. to Wolfdieter Lang by E. Neuwirth, Feb 15 2001; see also the 2001 Neuwirth reference. See the comment on products of Jabotinsky matrices.
a(n, m) = n!*A035324(n, m)/(m!*2^(n-m)), n >= m >= 1; a(n+1, m)= (2*n+m)*a(n, m)+a(n, m-1); a(n, m) := 0, n
E.g.f. of m-th column: ((x*c(x/2)/sqrt(1-2*x))^m)/m!, where c(x) = g.f. for Catalan numbers A000108.
From Vladimir Kruchinin, Mar 30 2011: (Start)
G.f. (1/sqrt(1-2*x) - 1)^k = Sum_{n>=k} (k!/n!)*a(n,k)*x^n.
a(n,k) = 2^(n+k) * n! / (4^n*n*k!) * Sum_{j=0..n-k} (j+k) * 2^(j) * binomial(j+k-1,k-1) * binomial(2*n-j-k-1,n-1). (End)
From Peter Bala, Nov 25 2011: (Start)
E.g.f.: G(x,t) = exp(t*A(x)) = 1 + t*x + (3*t + t^2)*x^2/2! + (15*t + 9*t^2 + t^3)*x^3/3! + ..., where A(x) = -1 + 1/sqrt(1-2*x) satisfies the autonomous differential equation A'(x) = (1+A(x))^3.
The generating function G(x,t) satisfies the partial differential equation t*(dG/dt+G) = (1-2*x)*dG/dx, from which follows the recurrence given above.
The row polynomials are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+x)^3*d/dx. Cf. A008277 (D = (1+x)*d/dx), A105278 (D = (1+x)^2*d/dx), A035469 (D = (1+x)^4*d/dx) and A049029 (D = (1+x)^5*d/dx). (End)
The n-th row polynomial R(n,x) is given by the Dobinski-type formula R(n,x) = exp(-x)*Sum_{k>=1} k*(k+2)*...*(k+2*n-2)*x^k/k!. - Peter Bala, Jun 22 2014
T(n,k) = 2^(k-n)*hypergeom([k-n,k+1],[k-2*n+1],2)*Gamma(2*n-k)/(Gamma(k)*Gamma(n-k+1)). - Peter Luschny, Mar 31 2015
T(n,k) = 2^n*Sum_{j=1..k} ((-1)^(k-j)*binomial(k, j)*Pochhammer(j/2, n)) / k!. - Peter Luschny, Mar 04 2024

Extensions

Simpler name from Peter Luschny, Mar 31 2015

A005442 a(n) = n!*Fibonacci(n+1).

Original entry on oeis.org

1, 1, 4, 18, 120, 960, 9360, 105840, 1370880, 19958400, 322963200, 5748019200, 111607372800, 2347586841600, 53178757632000, 1290674601216000, 33413695451136000, 919096314200064000, 26768324463648768000
Offset: 0

Author

Keywords

Comments

Number of ways to use the elements of {1,...,n} once each to form a sequence of lists, each having length 1 or 2. - Bob Proctor, Apr 18 2005
Number of pairs (p,S) where p is a permutation of {1,2,...,n} and S is a subset of {1,2,...,n} such that if s is in S then p(s) is not in S. For example a(2) = 4 because we have (p=(1)(2), s={}); (p=(1,2), s={}); (p=(1,2), s={1}); (p=(1,2), s={2}) where p is given in cycle notation. - Geoffrey Critzer, Jul 01 2013
Another way to state the first comment: a(n) is the number of ways to partition [n] into blocks of size at most 2, order the blocks, and order the elements within each block. For example, a(5)=960 since there are 3 cases: 1) 1,2,3,4,5: 120 such ordered blocks, 1 way to order elements within blocks, hence 120 ways; 2) 12,3,4,5: 240 such ordered blocks, 2 ways to order elements within blocks, hence 480 ways; 3) 12,34,5: 90 such ordered blocks, 4 ways to order elements within blocks, hence 360 ways. - Enrique Navarrete, Sep 01 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of Fibonacci Jabotinsky-triangle A039692.

Programs

  • Magma
    [Factorial(n)*Fibonacci(n+1): n in [0..20]]; // G. C. Greubel, Nov 20 2022
    
  • Mathematica
    Table[Fibonacci[n + 1]*n!, {n, 0, 20}] (* Zerinvary Lajos, Jul 09 2009 *)
  • PARI
    a(n) = n!*fibonacci(n+1) \\ Charles R Greathouse IV, Oct 03 2016
    
  • SageMath
    [fibonacci(n+1)*factorial(n) for n in range(21)] # G. C. Greubel, Nov 20 2022

Formula

a(n) = A039948(n,0).
E.g.f.: 1/(1-x-x^2).
D-finite with recurrence a(n) = n*a(n-1)+n*(n-1)*a(n-2). - Detlef Pauly (dettodet(AT)yahoo.de), Sep 22 2003
a(n) = D^n(1/(1-x)) evaluated at x = 0, where D is the operator sqrt(1+4*x)*d/dx. Cf. A080599 and A052585. - Peter Bala, Dec 07 2011

Extensions

Comments from Wolfdieter Lang

A075497 Stirling2 triangle with scaled diagonals (powers of 2).

Original entry on oeis.org

1, 2, 1, 4, 6, 1, 8, 28, 12, 1, 16, 120, 100, 20, 1, 32, 496, 720, 260, 30, 1, 64, 2016, 4816, 2800, 560, 42, 1, 128, 8128, 30912, 27216, 8400, 1064, 56, 1, 256, 32640, 193600, 248640, 111216, 21168, 1848, 72, 1
Offset: 1

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

This is a lower triangular infinite matrix of the Jabotinsky type. See the D. E. Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(2*z) - 1)*x/2) - 1.
Subtriangle of (0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 13 2013
Also the inverse Bell transform of the double factorial of even numbers Product_ {k=0..n-1} (2*k+2) (A000165). For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015
This is the exponential Riordan array [exp(2*x), (exp(2*x) - 1)/2] belonging to the derivative subgroup of the exponential Riordan group. In the notation of Corcino, this is the triangle of (2, 2)-Stirling numbers of the second kind. A factorization of the array as an infinite product is given in the example section. - Peter Bala, Feb 20 2025

Examples

			Triangle begins:
  [1];
  [2,1];
  [4,6,1]; p(3,x) = x*(4 + 6*x + x^2).
  ...;
Triangle (0, 2, 0, 4, 0, 6, 0, 8, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, ...) begins:
  1
  0,  1
  0,  2,   1
  0,  4,   6,   1
  0,  8,  28,  12,  1
  0, 16, 120, 100, 20, 1. - _Philippe Deléham_, Feb 13 2013
From _Peter Bala_, Feb 23 2025: (Start)
The array factorizes as
/ 1               \       /1             \ /1             \ /1            \
| 2    1           |     | 2   1          ||0  1           ||0  1          |
| 4    6   1       |  =  | 4   4   1      ||0  2   1       ||0  0  1       | ...
| 8   28  12   1   |     | 8  12   6  1   ||0  4   4  1    ||0  0  2  1    |
|16  120 100  20  1|     |16  32  24  8  1||0  8  12  6  1 ||0  0  4  4  1 |
|...               |     |...             ||...            ||...           |
where, in the infinite product on the right-hand side, the first array is the Riordan array (1/(1 - 2*x), x/(1 - 2*x)) = P^2, where P denotes Pascal's triangle. See A038207. Cf. A143494. (End)
		

Crossrefs

Row sums are A004211.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
           `if`(i<1, 0, add(x^j*multinomial(n, n-i*j, i$j)/j!*add(
            binomial(i, 2*k), k=0..i/2)^j*b(n-i*j, i-1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)):
    seq(T(n), n=1..12);  # Alois P. Heinz, Aug 13 2015
    # Alternatively, giving the triangle in the form displayed in the Example section:
    gf := exp(x*exp(z)*sinh(z)):
    X := n -> series(gf, z, n+2):
    Z := n -> n!*expand(simplify(coeff(X(n), z, n))):
    A075497_row := n -> op(PolynomialTools:-CoefficientList(Z(n), x)):
    seq(A075497_row(n), n=0..9); # Peter Luschny, Jan 14 2018
  • Mathematica
    Table[(2^(n - m)) StirlingS2[n, m], {n, 9}, {m, n}] // Flatten (* Michael De Vlieger, Dec 31 2015 *)
  • PARI
    for(n=1, 11, for(m=1, n, print1(2^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
  • Sage
    # uses[inverse_bell_transform from A265605]
    multifact_2_2 = lambda n: prod(2*k + 2 for k in (0..n-1))
    inverse_bell_matrix(multifact_2_2, 9) # Peter Luschny, Dec 31 2015
    

Formula

a(n, m) = (2^(n-m)) * Stirling2(n, m).
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*2)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 2*m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-2*k*x), m >= 1.
E.g.f. for m-th column: (((exp(2*x)-1)/2)^m)/m!, m >= 1.
The row polynomials in t are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+2*x)*d/dx. Cf. A008277. - Peter Bala, Nov 25 2011
From Peter Bala, Jan 13 2018: (Start)
n-th row polynomial R(n,x)= x o x o ... o x (n factors), where o is the deformed Hadamard product of power series defined in Bala, section 3.1.
R(n+1,x)/x = (x + 2) o (x + 2) o...o (x + 2) (n factors).
R(n+1,x) = x*Sum_{k = 0..n} binomial(n,k)*2^(n-k)*R(k,x).
Dobinski-type formulas: R(n,x) = exp(-x/2)*Sum_{i >= 0} (2*i)^n* (x/2)^i/i!; 1/x*R(n+1,x) = exp(-x/2)*Sum_{i >= 0} (2 + 2*i)^n* (x/2)^i/i!. (End)

A051141 Triangle read by rows: a(n, m) = S1(n, m)*3^(n-m), where S1 are the signed Stirling numbers of first kind A008275 (n >= 1, 1 <= m <= n).

Original entry on oeis.org

1, -3, 1, 18, -9, 1, -162, 99, -18, 1, 1944, -1350, 315, -30, 1, -29160, 22194, -6075, 765, -45, 1, 524880, -428652, 131544, -19845, 1575, -63, 1, -11022480, 9526572, -3191076, 548289, -52920, 2898, -84, 1, 264539520, -239660208
Offset: 1

Keywords

Comments

Previous name was: Generalized Stirling number triangle of first kind.
a(n,m) = R_n^m(a=0,b=3) in the notation of the given reference.
a(n,m) is a Jabotinsky matrix, i.e., the monic row polynomials E(n,x) := Sum_{m=1..n} a(n,m)*x^m = Product_{j=0..n-1} (x - 3*j), n >= 1 and E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
This is the signed Stirling1 triangle with diagonals d>=0 (main diagonal d=0) scaled with 3^d.
Exponential Riordan array [1/(1 + 3*x), log(1 + 3*x)/3]. The unsigned triangle is [1/(1 - 3*x), log(1/(1 - 3*x)^(1/3))]. - Paul Barry, Apr 29 2009
Also the Bell transform of the triple factorial numbers A032031 which adds a first column (1, 0, 0 ...) on the left side of the triangle and computes the unsigned values. For the definition of the Bell transform, see A264428. See A004747 for the triple factorial numbers A008544 and A203412 for the triple factorial numbers A007559 as well as A039683 and A132062 for the case of double factorial numbers. - Peter Luschny, Dec 21 2015

Examples

			Triangle starts:
       1;
      -3,       1;
      18,      -9,      1;
    -162,      99,    -18,      1;
    1944,   -1350,    315,    -30,    1;
  -29160,   22194,  -6075,    765,  -45,   1;
  524880, -428652, 131544, -19845, 1575, -63, 1;
---
Row polynomial E(3,x) = 18*x-9*x^2+x^3.
From _Paul Barry_, Apr 29 2009: (Start)
The unsigned array [1/(1 - 3*x), log(1/(1 - 3*x)^(1/3))] has production matrix
    3,    1;
    9,    6,    1;
   27,   27,    9,   1;
   81,  108,   54,  12,   1;
  243,  405,  270,  90,  15,  1;
  729, 1458, 1215, 540, 135, 18, 1;
  ...
which is A007318^{3} beheaded (by viewing A007318 as a lower triangular matrix). See the comment above. (End)
		

Crossrefs

First (m=1) column sequence is: A032031(n-1).
Row sums (signed triangle): A008544(n-1)*(-1)^(n-1).
Row sums (unsigned triangle): A007559(n).
Cf. A008275 (Stirling1 triangle, b=1), A039683 (b=2), A051142 (b=4).

Programs

Formula

a(n, m) = a(n-1, m-1) - 3*(n-1)*a(n-1, m) for n >= m >= 1; a(n, m) = 0 for n < m; a(n, 0) = 0 for n >= 1; a(0, 0) = 1.
E.g.f. for the m-th column of the signed triangle: (log(1 + 3*x)/3)^m/m!.
|a(n,1)| = A032031(n-1). - Peter Luschny, Dec 23 2015

Extensions

Name clarified using a formula of the author by Peter Luschny, Dec 23 2015

A075498 Stirling2 triangle with scaled diagonals (powers of 3).

Original entry on oeis.org

1, 3, 1, 9, 9, 1, 27, 63, 18, 1, 81, 405, 225, 30, 1, 243, 2511, 2430, 585, 45, 1, 729, 15309, 24381, 9450, 1260, 63, 1, 2187, 92583, 234738, 137781, 28350, 2394, 84, 1, 6561, 557685, 2205225, 1888110, 563031, 71442, 4158, 108, 1
Offset: 1

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

This is a lower triangular infinite matrix of the Jabotinsky type. See the D. E. Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(3*z) - 1)*x/3) - 1.
Subtriangle of the triangle given by (0, 3, 0, 6, 0, 9, 0, 12, 0, 15, 0, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...) where DELTA is the operator defined in A084938, see example. - Philippe Deléham, Feb 13 2013
Also the Bell transform of A000244. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016

Examples

			[1]; [3,1]; [9,9,1]; ...; p(3,x) = x*(9 + 9*x + x^2).
From _Philippe Deléham_, Feb 13 2013: (Start)
Triangle (0, 3, 0, 6, 0, 9, 0, 12, 0, 15, 0, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, ...) begins:
  1;
  0,   1;
  0,   3,   1;
  0,   9,   9,   1;
  0,  27,  63,  18,   1;
  0,  81, 405, 225,  30,   1;
(End)
		

Crossrefs

Columns 1-7 are A000244, A016137, A017933, A028085, A075515, A075516, A075906. Row sums are A004212.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1, 0, 0, 0, ..) as column 0.
    BellMatrix(n -> 3^n, 9); # Peter Luschny, Jan 26 2016
  • Mathematica
    Flatten[Table[3^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
    rows = 9;
    t = Table[3^n, {n, 0, rows}];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
  • PARI
    for(n=1, 11, for(m=1, n, print1(3^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n, m) = (3^(n-m)) * stirling2(n, m).
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*3)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 3*m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-3*k*x), m >= 1.
E.g.f. for m-th column: (((exp(3*x)-1)/3)^m)/m!, m >= 1.
From Peter Bala, Jan 13 2018: (Start)
Dobinski-type formulas for row polynomials R(n,x):
R(n,x) = exp(-x/3)*Sum_{i >= 0} (3*i)^n* (x/3)^i/i!;
R(n+1,x) = x*exp(-x/3)*Sum_{i >= 0} (3 + 3*i)^n* (x/3)^i/i!.
R(n+1,x) = x*Sum_{k = 0..n} binomial(n,k)*3^(n-k)*R(k,x).(End)

A075499 Stirling2 triangle with scaled diagonals (powers of 4).

Original entry on oeis.org

1, 4, 1, 16, 12, 1, 64, 112, 24, 1, 256, 960, 400, 40, 1, 1024, 7936, 5760, 1040, 60, 1, 4096, 64512, 77056, 22400, 2240, 84, 1, 16384, 520192, 989184, 435456, 67200, 4256, 112, 1, 65536, 4177920, 12390400, 7956480, 1779456, 169344, 7392, 144, 1
Offset: 1

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

This is a lower triangular infinite matrix of the Jabotinsky type. See the Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(4*z) - 1)*x/4) - 1
Also the inverse Bell transform of the quadruple factorial numbers 4^n*n! (A047053) adding 1,0,0,0,... as column 0. For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015

Examples

			[1]; [4,1]; [16,12,1]; ...; p(3,x) = x(16 + 12*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
*     1
*     4      1
*    16     12      1
*    64    112     24      1
*   256    960    400     40     1
*  1024   7936   5760   1040    60    1
*  4096  64512  77056  22400  2240   84   1
* 16384 520192 989184 435456 67200 4256 112 1
(End)
		

Crossrefs

Columns 1-7 are A000302, A016152, A019677, A075907-A075910. Row sums are A004213.

Programs

  • Mathematica
    Table[(4^(n - m)) StirlingS2[n, m], {n, 9}, {m, n}] // Flatten (* Michael De Vlieger, Dec 31 2015 *)
  • PARI
    for(n=1, 11, for(m=1, n, print1(4^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
  • Sage
    # uses[inverse_bell_transform from A265605]
    # Adds a column 1,0,0,... at the left side of the triangle.
    multifact_4_4 = lambda n: prod(4*k + 4 for k in (0..n-1))
    inverse_bell_matrix(multifact_4_4, 9) # Peter Luschny, Dec 31 2015
    

Formula

a(n, m) = (4^(n-m)) * stirling2(n, m).
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*4)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 4m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-4k*x), m >= 1.
E.g.f. for m-th column: (((exp(4x)-1)/4)^m)/m!, m >= 1.

A111594 Triangle of arctanh numbers.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 8, 0, 1, 0, 24, 0, 20, 0, 1, 0, 0, 184, 0, 40, 0, 1, 0, 720, 0, 784, 0, 70, 0, 1, 0, 0, 8448, 0, 2464, 0, 112, 0, 1, 0, 40320, 0, 52352, 0, 6384, 0, 168, 0, 1, 0, 0, 648576, 0, 229760, 0, 14448, 0, 240, 0, 1
Offset: 0

Author

Wolfdieter Lang, Aug 23 2005

Keywords

Comments

Sheffer triangle associated to Sheffer triangle A060524.
For Sheffer triangles (matrices) see the explanation and S. Roman reference given under A048854.
The inverse matrix of A with elements a(n,m), n,m>=0, is given in A111593.
In the umbral calculus notation (see the S. Roman reference) this triangle would be called associated to (1,tanh(y)).
The row polynomials p(n,x):=sum(a(n,m)*x^m,m=0..n), together with the row polynomials s(n,x) of A060524 satisfy the exponential (or binomial) convolution identity s(n,x+y) = sum(binomial(n,k)*s(k,x)*p(n-k,y),k=0..n), n>=0.
Without the n=0 row and m=0 column and signed, this will become the Jabotinsky triangle A049218 (arctan numbers). For Jabotinsky matrices see the Knuth reference under A039692.
The row polynomials p(n,x) (defined above) have e.g.f. exp(x*arctanh(y)).
Exponential Riordan array [1, arctanh(x)] = [1, log(sqrt((1+x)/(1-x)))]. - Paul Barry, Apr 17 2008
Also the Bell transform of A005359. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			Binomial convolution of row polynomials:
p(3,x)= 2*x+x^3; p(2,x)=x^2, p(1,x)= x, p(0,x)= 1,
together with those from A060524:
s(3,x)= 5*x+x^3; s(2,x)= 1+x^2, s(1,x)= x, s(0,x)= 1; therefore:
5*(x+y)+(x+y)^3 = s(3,x+y) = 1*s(0,x)*p(3,y) + 3*s(1,x)*p(2,y) + 3*s(2,x)*p(1,y) +1*s(3,x)*p(0,y) = 2*y+y^3 + 3*x*y^2 + 3*(1+x^2)*y + (5*x+x^3).
Triangle begins:
  1;
  0,   1;
  0,   0,    1;
  0,   2,    0,   1;
  0,   0,    8,   0,    1;
  0,  24,    0,  20,    0,  1;
  0,   0,  184,   0,   40,  0,   1;
  0, 720,    0, 784,    0, 70,   0, 1;
  0,   0, 8448,   0, 2464,  0, 112, 0, 1;
...
		

Crossrefs

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> `if`(n::even, n!, 0), 10); # Peter Luschny, Jan 27 2016
  • Mathematica
    rows = 10;
    t = Table[If[EvenQ[n], n!, 0], {n, 0, rows}];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
  • Sage
    # uses[riordan_array from A256893]
    riordan_array(1, atanh(x), 9, exp=true) # Peter Luschny, Apr 19 2015

Formula

E.g.f. for column m>=0: ((arctanh(x))^m)/m!.
a(n, m) = coefficient of x^n of ((arctanh(x))^m)/m!, n>=m>=0, else 0.
a(n, m) = a(n-1, m-1) + (n-2)*(n-1)*a(n-2, m), a(n, -1):=0, a(0, 0)=1, a(n, m)=0 for n

A129062 T(n, k) = [x^k] Sum_{k=0..n} Stirling2(n, k)*RisingFactorial(x, k), triangle read by rows, for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 6, 1, 0, 26, 36, 12, 1, 0, 150, 250, 120, 20, 1, 0, 1082, 2040, 1230, 300, 30, 1, 0, 9366, 19334, 13650, 4270, 630, 42, 1, 0, 94586, 209580, 166376, 62160, 11900, 1176, 56, 1, 0, 1091670, 2562354, 2229444, 952728, 220500, 28476, 2016, 72, 1
Offset: 0

Author

Wolfdieter Lang, May 04 2007

Keywords

Comments

Matrix product of Stirling2 with unsigned Stirling1 triangle.
For the subtriangle without column no. m=0 and row no. n=0 see A079641.
The reversed matrix product |S1|. S2 is given in A111596.
As a product of lower triangular Jabotinsky matrices this is a lower triangular Jabotinsky matrix. See the D. E. Knuth references given in A039692 for Jabotinsky type matrices.
E.g.f. for row polynomials P(n,x):=sum(a(n,m)*x^m,m=0..n) is 1/(2-exp(z))^x. See the e.g.f. for the columns given below.
A048993*A132393 as infinite lower triangular matrices. - Philippe Deléham, Nov 01 2009
Triangle T(n,k), read by rows, given by (0,2,1,4,2,6,3,8,4,10,5,...) DELTA (1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 19 2011.
Also the Bell transform of A000629. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			Triangle begins:
  1;
  0,    1;
  0,    2,    1;
  0,    6,    6,    1;
  0,   26,   36,   12,   1;
  0,  150,  250,  120,  20,  1;
  0, 1082, 2040, 1230, 300, 30,  1;
		

Crossrefs

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> polylog(-n,1/2), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    rows = 9;
    t = Table[PolyLog[-n, 1/2], {n, 0, rows}]; T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
    p[n_] := Sum[StirlingS2[n, k] Pochhammer[x, k], {k, 0, n}];
    Table[CoefficientList[FunctionExpand[p[n]], x], {n, 0, 9}] // Flatten (* Peter Luschny, Jun 27 2019 *)
  • Sage
    def a_row(n):
        s = sum(stirling_number2(n,k)*rising_factorial(x,k) for k in (0..n))
        return expand(s).list()
    [a_row(n) for n in (0..9)] # Peter Luschny, Jun 28 2019

Formula

a(n,m) = Sum_{k=m..n} S2(n,k) * |S1(k,m)|, n>=0; S2=A048993, S1=A048994.
E.g.f. of column k (with leading zeros): (f(x)^k)/k! with f(x):= -log(1-(exp(x)-1)) = -log(2-exp(x)).
Sum_{0<=k<=n} T(n,k)*x^k = A153881(n+1), A000007(n), A000670(n), A005649(n) for x = -1,0,1,2 respectively. - Philippe Deléham, Nov 19 2011

Extensions

New name by Peter Luschny, Jun 27 2019

A046089 Triangle read by rows, the Bell transform of (n+2)!/2 without column 0.

Original entry on oeis.org

1, 3, 1, 12, 9, 1, 60, 75, 18, 1, 360, 660, 255, 30, 1, 2520, 6300, 3465, 645, 45, 1, 20160, 65520, 47880, 12495, 1365, 63, 1, 181440, 740880, 687960, 235305, 35700, 2562, 84, 1, 1814400, 9072000, 10372320, 4452840, 877905, 86940, 4410, 108, 1
Offset: 1

Keywords

Comments

Previous name was: A triangle of numbers related to triangle A030523.
a(n,1)= A001710(n+1). a(n,m)=: S1p(3; n,m), a member of a sequence of lower triangular Jabotinsky matrices with nonnegative entries, including S1p(1; n,m)= A008275 (unsigned Stirling first kind), S1p(2; n,m)= A008297(n,m) (unsigned Lah numbers).
Signed lower triangular matrix (-1)^(n-m)*a(n,m) is inverse to matrix A035342(n,m) := S2(3; n,m). The monic row polynomials E(n,x) := sum(a(n,m)*x^m,m=1..n), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
a(n,m) enumerates unordered increasing n-vertex m-forests composed of m unary trees (out-degree r from {0,1}) whose vertices of depth (distance from the root) j>=1 come in j+2 colors. The k roots (j=0) each come in one (or no) color. - Wolfdieter Lang, Oct 12 2007
a(4,2)=75=4*(3*4)+3*(3*3) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*3*4)=12 colored versions, e.g. ((1c1),(2c1,3c3,4c2)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 3 colors, c1, c2 and c3, can be chosen and the vertex labeled 4 with j=2 can come in 4 colors, e.g. c1, c2, c3 and c4. Therefore there are 4*(1)*(1*3*4)=48 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*3)*(1*3))=27 such forests, e.g. ((1c1,3c2)(2c1,4c1)) or ((1c1,3c2)(2c1,4c2)), etc. - Wolfdieter Lang, Oct 12 2007
Also the Bell transform of A001710(n+2) (adding 1,0,0,.. as column 0). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016

Examples

			Triangle begins:
  [1],
  [3, 1],
  [12, 9, 1],
  [60, 75, 18, 1],
  [360, 660, 255, 30, 1],
  [2520, 6300, 3465, 645, 45, 1],
  ...
		

Crossrefs

Alternating row sums A134138.

Programs

  • Mathematica
    a[n_, m_] /; n >= m >= 1 := a[n, m] = (2m + n - 1)*a[n-1, m] + a[n-1, m-1]; a[n_, m_] /; n < m = 0; a[, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]] (* _Jean-François Alcover, Jul 22 2011 *)
    a[n_, k_] := -(-1/2)^k*(n+1)!*HypergeometricPFQ[{1-k, n/2+1, (n+3)/2}, {3/2, 2}, 1]/(k-1)!; Table[a[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 28 2013, after Vladimir Kruchinin *)
    a[0] = 0; a[n_] := (n + 1)!/2;
    T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, a[0]^n], Sum[Binomial[n - 1, j - 1] a[j] T[n - j, k - 1], {j, 0, n - k + 1}]];
    Table[T[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 19 2016, after Peter Luschny, updated Jan 01 2021 *)
    rows = 9;
    a[n_, m_] := BellY[n, m, Table[(k+2)!/2, {k, 0, rows}]];
    Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
  • Maxima
    a(n,k):=(n!*sum((-1)^(k-j)*binomial(k,j)*binomial(n+2*j-1,2*j-1),j,1,k))/(2^k*k!); /* Vladimir Kruchinin, Apr 01 2011 */
    
  • Sage
    # uses[bell_matrix from A264428]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    bell_matrix(lambda n: factorial(n+2)//2, 9) # Peter Luschny, Jan 19 2016

Formula

a(n, m) = n!*A030523(n, m)/(m!*2^(n-m)); a(n, m) = (2*m+n-1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n
a(n, m) = sum(|S1(n, j)|* A075497(j, m), j=m..n) (matrix product), with S1(n, j) := A008275(n, j) (signed Stirling1 triangle). Priv. comm. to Wolfdieter Lang by E. Neuwirth, Feb 15 2001; see also the 2001 Neuwirth reference.
a(n, k) = (n!*sum(j=1..k, (-1)^(k-j)*binomial(k,j)*binomial(n+2*j-1,2*j-1)))/(2^k*k!) - Vladimir Kruchinin, Apr 01 2011

Extensions

New name from Peter Luschny, Jan 19 2016
Showing 1-10 of 36 results. Next