1, 3, 1, 15, 9, 1, 105, 87, 18, 1, 945, 975, 285, 30, 1, 10395, 12645, 4680, 705, 45, 1, 135135, 187425, 82845, 15960, 1470, 63, 1, 2027025, 3133935, 1595790, 370125, 43890, 2730, 84, 1, 34459425, 58437855, 33453945, 8998290
Offset: 1
Matrix begins:
1;
3, 1;
15, 9, 1;
105, 87, 18, 1;
945, 975, 285, 30, 1;
...
Combinatoric meaning of a(3,2)=9: The nine increasing path sequences for the three rooted ordered trees with leaves labeled with 1,2,3 and the root labels 0 are: {(0,3),[(0,1),(0,2)]}; {(0,3),[(0,2),(0,1)]}; {(0,3),(0,1,2)}; {(0,1),[(0,3),(0,2)]}; [(0,1),[(0,2),(0,3)]]; [(0,2),[(0,1),(0,3)]]; {(0,2),[(0,3),(0,1)]}; {(0,1),(0,2,3)}; {(0,2),(0,1,3)}.
A005442
a(n) = n!*Fibonacci(n+1).
Original entry on oeis.org
1, 1, 4, 18, 120, 960, 9360, 105840, 1370880, 19958400, 322963200, 5748019200, 111607372800, 2347586841600, 53178757632000, 1290674601216000, 33413695451136000, 919096314200064000, 26768324463648768000
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..416
- P. R. J. Asveld & N. J. A. Sloane, Correspondence, 1987
- P. R. J. Asveld, A family of Fibonacci-like sequences, Fib. Quart., 25 (1987), 81-83.
- P. R. J. Asveld, Another family of Fibonacci-like sequences, Fib. Quart., 25 (1987), 361-364.
- P. R. J. Asveld, Fibonacci-like differential equations with a polynomial nonhomogeneous term, Fib. Quart. 27 (1989), 303-309.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 494
- Robert A. Proctor, Let's Expand Rota's Twelvefold Way For Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- Index entries for related partition-counting sequences
Row sums of Fibonacci Jabotinsky-triangle
A039692.
A075497
Stirling2 triangle with scaled diagonals (powers of 2).
Original entry on oeis.org
1, 2, 1, 4, 6, 1, 8, 28, 12, 1, 16, 120, 100, 20, 1, 32, 496, 720, 260, 30, 1, 64, 2016, 4816, 2800, 560, 42, 1, 128, 8128, 30912, 27216, 8400, 1064, 56, 1, 256, 32640, 193600, 248640, 111216, 21168, 1848, 72, 1
Offset: 1
Triangle begins:
[1];
[2,1];
[4,6,1]; p(3,x) = x*(4 + 6*x + x^2).
...;
Triangle (0, 2, 0, 4, 0, 6, 0, 8, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, ...) begins:
1
0, 1
0, 2, 1
0, 4, 6, 1
0, 8, 28, 12, 1
0, 16, 120, 100, 20, 1. - _Philippe Deléham_, Feb 13 2013
From _Peter Bala_, Feb 23 2025: (Start)
The array factorizes as
/ 1 \ /1 \ /1 \ /1 \
| 2 1 | | 2 1 ||0 1 ||0 1 |
| 4 6 1 | = | 4 4 1 ||0 2 1 ||0 0 1 | ...
| 8 28 12 1 | | 8 12 6 1 ||0 4 4 1 ||0 0 2 1 |
|16 120 100 20 1| |16 32 24 8 1||0 8 12 6 1 ||0 0 4 4 1 |
|... | |... ||... ||... |
where, in the infinite product on the right-hand side, the first array is the Riordan array (1/(1 - 2*x), x/(1 - 2*x)) = P^2, where P denotes Pascal's triangle. See A038207. Cf. A143494. (End)
- Alois P. Heinz, Rows n = 1..141, flattened
- Peter Bala, The white diamond product of power series
- Peter Bala, Factorising (r,b)-Stirling arrays
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- John R. Britnell and Mark Wildon, Bell numbers, partition moves and the eigenvalues of the random-to-top shuffle in types A, B and D, arXiv 1507.04803 [math.CO], 2015.
- Roberto B. Corcino, The (r, β)-Stirling Numbers, The Mindanao Forum, Vol. XIV, No.2, pp. 91-99, 1999.
- Roberto B. Corcino and Maribeth B. Montero, The (r, β)-Stirling Numbers in the Context of 0-1 Tableau, Jour. Math. Soc. of the Philippines, ISSN 0115-6926, Vol. 32, No. 1 (2009), pp. 45-52
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
- Wolfdieter Lang, First 10 rows.
- Toufik Mansour, Generalization of some identities involving the Fibonacci numbers, arXiv:math/0301157 [math.CO], 2003.
- Emanuele Munarini, Characteristic, admittance and matching polynomials of an antiregular graph, Appl. Anal. Discrete Math 3 (1) (2009) 157-176.
-
with(combinat):
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(x^j*multinomial(n, n-i*j, i$j)/j!*add(
binomial(i, 2*k), k=0..i/2)^j*b(n-i*j, i-1), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)):
seq(T(n), n=1..12); # Alois P. Heinz, Aug 13 2015
# Alternatively, giving the triangle in the form displayed in the Example section:
gf := exp(x*exp(z)*sinh(z)):
X := n -> series(gf, z, n+2):
Z := n -> n!*expand(simplify(coeff(X(n), z, n))):
A075497_row := n -> op(PolynomialTools:-CoefficientList(Z(n), x)):
seq(A075497_row(n), n=0..9); # Peter Luschny, Jan 14 2018
-
Table[(2^(n - m)) StirlingS2[n, m], {n, 9}, {m, n}] // Flatten (* Michael De Vlieger, Dec 31 2015 *)
-
for(n=1, 11, for(m=1, n, print1(2^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
-
# uses[inverse_bell_transform from A265605]
multifact_2_2 = lambda n: prod(2*k + 2 for k in (0..n-1))
inverse_bell_matrix(multifact_2_2, 9) # Peter Luschny, Dec 31 2015
A051141
Triangle read by rows: a(n, m) = S1(n, m)*3^(n-m), where S1 are the signed Stirling numbers of first kind A008275 (n >= 1, 1 <= m <= n).
Original entry on oeis.org
1, -3, 1, 18, -9, 1, -162, 99, -18, 1, 1944, -1350, 315, -30, 1, -29160, 22194, -6075, 765, -45, 1, 524880, -428652, 131544, -19845, 1575, -63, 1, -11022480, 9526572, -3191076, 548289, -52920, 2898, -84, 1, 264539520, -239660208
Offset: 1
Triangle starts:
1;
-3, 1;
18, -9, 1;
-162, 99, -18, 1;
1944, -1350, 315, -30, 1;
-29160, 22194, -6075, 765, -45, 1;
524880, -428652, 131544, -19845, 1575, -63, 1;
---
Row polynomial E(3,x) = 18*x-9*x^2+x^3.
From _Paul Barry_, Apr 29 2009: (Start)
The unsigned array [1/(1 - 3*x), log(1/(1 - 3*x)^(1/3))] has production matrix
3, 1;
9, 6, 1;
27, 27, 9, 1;
81, 108, 54, 12, 1;
243, 405, 270, 90, 15, 1;
729, 1458, 1215, 540, 135, 18, 1;
...
which is A007318^{3} beheaded (by viewing A007318 as a lower triangular matrix). See the comment above. (End)
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales, Two Approaches to Normal Order Coefficients, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
- Wolfdieter Lang, First 10 rows.
- D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 77 (1962), 1-77.
First (m=1) column sequence is:
A032031(n-1).
Row sums (signed triangle):
A008544(n-1)*(-1)^(n-1).
Row sums (unsigned triangle):
A007559(n).
-
a[n_, m_] /; n >= m >= 1 := a[n, m] = a[n-1, m-1] - 3(n-1)*a[n-1, m]; a[n_, m_] /; n < m = 0; a[, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]][[1 ;; 38]] (* _Jean-François Alcover, Jun 01 2011, after formula *)
Table[StirlingS1[n, m]*3^(n - m), {n, 1, 10}, {m, 1, n}]//Flatten (* G. C. Greubel, Oct 24 2017 *)
-
for(n=1,10, for(m=1,n, print1(stirling(n,m,1)*3^(n-m), ", "))) \\ G. C. Greubel, Oct 24 2017
-
# uses[bell_transform from A264428]
triplefactorial = lambda n: 3^n*factorial(n)
def A051141_row(n):
trifact = [triplefactorial(k) for k in (0..n)]
return bell_transform(n, trifact)
[A051141_row(n) for n in (0..8)] # Peter Luschny, Dec 21 2015
Name clarified using a formula of the author by
Peter Luschny, Dec 23 2015
A075498
Stirling2 triangle with scaled diagonals (powers of 3).
Original entry on oeis.org
1, 3, 1, 9, 9, 1, 27, 63, 18, 1, 81, 405, 225, 30, 1, 243, 2511, 2430, 585, 45, 1, 729, 15309, 24381, 9450, 1260, 63, 1, 2187, 92583, 234738, 137781, 28350, 2394, 84, 1, 6561, 557685, 2205225, 1888110, 563031, 71442, 4158, 108, 1
Offset: 1
[1]; [3,1]; [9,9,1]; ...; p(3,x) = x*(9 + 9*x + x^2).
From _Philippe Deléham_, Feb 13 2013: (Start)
Triangle (0, 3, 0, 6, 0, 9, 0, 12, 0, 15, 0, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, ...) begins:
1;
0, 1;
0, 3, 1;
0, 9, 9, 1;
0, 27, 63, 18, 1;
0, 81, 405, 225, 30, 1;
(End)
-
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> 3^n, 9); # Peter Luschny, Jan 26 2016
-
Flatten[Table[3^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
rows = 9;
t = Table[3^n, {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
-
for(n=1, 11, for(m=1, n, print1(3^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
A075499
Stirling2 triangle with scaled diagonals (powers of 4).
Original entry on oeis.org
1, 4, 1, 16, 12, 1, 64, 112, 24, 1, 256, 960, 400, 40, 1, 1024, 7936, 5760, 1040, 60, 1, 4096, 64512, 77056, 22400, 2240, 84, 1, 16384, 520192, 989184, 435456, 67200, 4256, 112, 1, 65536, 4177920, 12390400, 7956480, 1779456, 169344, 7392, 144, 1
Offset: 1
[1]; [4,1]; [16,12,1]; ...; p(3,x) = x(16 + 12*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
* 1
* 4 1
* 16 12 1
* 64 112 24 1
* 256 960 400 40 1
* 1024 7936 5760 1040 60 1
* 4096 64512 77056 22400 2240 84 1
* 16384 520192 989184 435456 67200 4256 112 1
(End)
-
Table[(4^(n - m)) StirlingS2[n, m], {n, 9}, {m, n}] // Flatten (* Michael De Vlieger, Dec 31 2015 *)
-
for(n=1, 11, for(m=1, n, print1(4^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
-
# uses[inverse_bell_transform from A265605]
# Adds a column 1,0,0,... at the left side of the triangle.
multifact_4_4 = lambda n: prod(4*k + 4 for k in (0..n-1))
inverse_bell_matrix(multifact_4_4, 9) # Peter Luschny, Dec 31 2015
A111594
Triangle of arctanh numbers.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 8, 0, 1, 0, 24, 0, 20, 0, 1, 0, 0, 184, 0, 40, 0, 1, 0, 720, 0, 784, 0, 70, 0, 1, 0, 0, 8448, 0, 2464, 0, 112, 0, 1, 0, 40320, 0, 52352, 0, 6384, 0, 168, 0, 1, 0, 0, 648576, 0, 229760, 0, 14448, 0, 240, 0, 1
Offset: 0
Binomial convolution of row polynomials:
p(3,x)= 2*x+x^3; p(2,x)=x^2, p(1,x)= x, p(0,x)= 1,
together with those from A060524:
s(3,x)= 5*x+x^3; s(2,x)= 1+x^2, s(1,x)= x, s(0,x)= 1; therefore:
5*(x+y)+(x+y)^3 = s(3,x+y) = 1*s(0,x)*p(3,y) + 3*s(1,x)*p(2,y) + 3*s(2,x)*p(1,y) +1*s(3,x)*p(0,y) = 2*y+y^3 + 3*x*y^2 + 3*(1+x^2)*y + (5*x+x^3).
Triangle begins:
1;
0, 1;
0, 0, 1;
0, 2, 0, 1;
0, 0, 8, 0, 1;
0, 24, 0, 20, 0, 1;
0, 0, 184, 0, 40, 0, 1;
0, 720, 0, 784, 0, 70, 0, 1;
0, 0, 8448, 0, 2464, 0, 112, 0, 1;
...
-
# The function BellMatrix is defined in A264428.
BellMatrix(n -> `if`(n::even, n!, 0), 10); # Peter Luschny, Jan 27 2016
-
rows = 10;
t = Table[If[EvenQ[n], n!, 0], {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
-
# uses[riordan_array from A256893]
riordan_array(1, atanh(x), 9, exp=true) # Peter Luschny, Apr 19 2015
A129062
T(n, k) = [x^k] Sum_{k=0..n} Stirling2(n, k)*RisingFactorial(x, k), triangle read by rows, for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 6, 6, 1, 0, 26, 36, 12, 1, 0, 150, 250, 120, 20, 1, 0, 1082, 2040, 1230, 300, 30, 1, 0, 9366, 19334, 13650, 4270, 630, 42, 1, 0, 94586, 209580, 166376, 62160, 11900, 1176, 56, 1, 0, 1091670, 2562354, 2229444, 952728, 220500, 28476, 2016, 72, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 6, 6, 1;
0, 26, 36, 12, 1;
0, 150, 250, 120, 20, 1;
0, 1082, 2040, 1230, 300, 30, 1;
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened).
- Olivier Bodini, Antoine Genitrini, Cécile Mailler, Mehdi Naima, Strict monotonic trees arising from evolutionary processes: combinatorial and probabilistic study, hal-02865198 [math.CO] / [math.PR] / [cs.DS] / [cs.DM], 2020.
- Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
- Wolfdieter Lang, First ten rows and more.
-
# The function BellMatrix is defined in A264428.
BellMatrix(n -> polylog(-n,1/2), 9); # Peter Luschny, Jan 27 2016
-
rows = 9;
t = Table[PolyLog[-n, 1/2], {n, 0, rows}]; T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
p[n_] := Sum[StirlingS2[n, k] Pochhammer[x, k], {k, 0, n}];
Table[CoefficientList[FunctionExpand[p[n]], x], {n, 0, 9}] // Flatten (* Peter Luschny, Jun 27 2019 *)
-
def a_row(n):
s = sum(stirling_number2(n,k)*rising_factorial(x,k) for k in (0..n))
return expand(s).list()
[a_row(n) for n in (0..9)] # Peter Luschny, Jun 28 2019
A046089
Triangle read by rows, the Bell transform of (n+2)!/2 without column 0.
Original entry on oeis.org
1, 3, 1, 12, 9, 1, 60, 75, 18, 1, 360, 660, 255, 30, 1, 2520, 6300, 3465, 645, 45, 1, 20160, 65520, 47880, 12495, 1365, 63, 1, 181440, 740880, 687960, 235305, 35700, 2562, 84, 1, 1814400, 9072000, 10372320, 4452840, 877905, 86940, 4410, 108, 1
Offset: 1
Triangle begins:
[1],
[3, 1],
[12, 9, 1],
[60, 75, 18, 1],
[360, 660, 255, 30, 1],
[2520, 6300, 3465, 645, 45, 1],
...
-
a[n_, m_] /; n >= m >= 1 := a[n, m] = (2m + n - 1)*a[n-1, m] + a[n-1, m-1]; a[n_, m_] /; n < m = 0; a[, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]] (* _Jean-François Alcover, Jul 22 2011 *)
a[n_, k_] := -(-1/2)^k*(n+1)!*HypergeometricPFQ[{1-k, n/2+1, (n+3)/2}, {3/2, 2}, 1]/(k-1)!; Table[a[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 28 2013, after Vladimir Kruchinin *)
a[0] = 0; a[n_] := (n + 1)!/2;
T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, a[0]^n], Sum[Binomial[n - 1, j - 1] a[j] T[n - j, k - 1], {j, 0, n - k + 1}]];
Table[T[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 19 2016, after Peter Luschny, updated Jan 01 2021 *)
rows = 9;
a[n_, m_] := BellY[n, m, Table[(k+2)!/2, {k, 0, rows}]];
Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
-
a(n,k):=(n!*sum((-1)^(k-j)*binomial(k,j)*binomial(n+2*j-1,2*j-1),j,1,k))/(2^k*k!); /* Vladimir Kruchinin, Apr 01 2011 */
-
# uses[bell_matrix from A264428]
# Adds a column 1,0,0,0, ... at the left side of the triangle.
bell_matrix(lambda n: factorial(n+2)//2, 9) # Peter Luschny, Jan 19 2016
Showing 1-10 of 36 results.
Next
Comments