T(n,k) = Sum_{j = 0..n} (-1)^(n+k) * (-2)^(n-j) * Stirling2(n,j) * |Stirling1(j,k)|. [corrected by
Seiichi Manyama, Apr 16 2025]
E.g.f.: F(x,t) := (1/2 + 1/2*exp(2*x))^t = (1 + tanh(-x))^(-t) = 1 + t*x + (t+t^2)*x^2/2! + (3*t^2+t^3)*x^3/3! + ... satisfies the delay differential equation d/dx(F(x,t)) = 2*F(x,t) - F(x,t-1).
Recurrence for row polynomials R(n,t): R(n+1,t) = t*(2*R(n,t) - R(n,t-1)) with R(0,t) = 1.
Let D be the backward difference operator D(f(x)) = f(x) - f(x-1). Then (x*D)^n(2^x) = 2^(x-n)*R(n,x). Cf.
A079641.
Discrete Dobinski-type relation: R(n,x) = 1/2^x*Sum_{k = 0..inf} (2*k)^n*x*(x - 1)*...*(x - k + 1)/k!, valid for x = 0,1,2,.... and n >= 1.
Other Dobinski-type relations: exp(-x)*Sum_{k = 0..inf} R(n,k)*x^k/k! = n-th row polynomial of
A075497.
exp(-x)*Sum_{k = 0..inf} R(n,k+1)*x^k/k! = n-th row polynomial of
A154602.
i^(-n)*exp(i*x)*Sum_{k = 0..inf} R(n,-k)*(-i*x)^k/k! = n-th row polynomial of
A059419 where i = sqrt(-1).
Writing x^[n] in place of R(n,x) we have the analog of the Bernoulli summation formula for powers of integers: Sum_{k = 1..n-1} k^[p] = 1/(p + 1)*Sum_{k = 0..p} 2^k*binomial(p+1,k)*B_k*n^[p+1-k], where B_k = [1,-1/2,1/6,0,-1/30,...] is the sequence of Bernoulli numbers.
n-th row sum R(n,1) equals 2^(n-1). Alternating row sums R(n,-1) starting [-1,0,2,0,-16,0,272,...] are signed tangent numbers - see
A009006 and
A155585.
Triangle as a product of lower triangular arrays equals
A075497*
A008275.
The triangle of connection constants between the polynomials (x + 1)^[n] and x^[n] appears to be
A119468 = (P^2 + 1)/2, where P denotes Pascal's triangle.
Also the Bell transform of the sequence 2^n*E(n,1), E(n,x) the Euler polynomials (
A155585). For the definition of the Bell transform see
A264428. -
Peter Luschny, Jan 21 2016
With row and column numbering starting at 0:
E.g.f. is exp(x)/cosh(x)*((1 + exp(2*x))/2)^t = 1 + (1 + t)*x + (3*t + t^2)*x^2/2! + (-2 + 3*t + 6*t^2 + t^3)*x^3/3! + ....
Exponential Riordan array [d/dx(f(x)), f(x)] belonging to the Derivative subgroup of the Riordan group, where f(x) = log((1 + exp(2*x))/2) and df/dx = exp(x)/cosh(x) is the e.g.f. for
A155585. (End)
T(n,k) = [x^k] Sum_{k=0..n} 2^(n-k) * Stirling2(n,k) * FallingFactorial(x,k). -
Seiichi Manyama, Apr 16 2025
E.g.f. of column k (with leading zeros): f(x)^k / k! with f(x) = log(1 + (exp(2*x) - 1)/2). -
Seiichi Manyama, Apr 18 2025
Comments