A075513
Triangle read by rows. T(n, m) are the coefficients of Sidi polynomials.
Original entry on oeis.org
1, -1, 2, 1, -8, 9, -1, 24, -81, 64, 1, -64, 486, -1024, 625, -1, 160, -2430, 10240, -15625, 7776, 1, -384, 10935, -81920, 234375, -279936, 117649, -1, 896, -45927, 573440, -2734375, 5878656, -5764801, 2097152, 1, -2048, 183708, -3670016, 27343750, -94058496, 161414428, -134217728, 43046721
Offset: 1
The triangle T(n, m) begins:
n\m 0 1 2 3 4 5 6 7 8
1: 1
2: -1 2
3: 1 -8 9
4: -1 24 -81 64
5: 1 -64 486 -1024 625
6: -1 160 -2430 10240 -15625 7776
7: 1 -384 10935 -81920 234375 -279936 117649
8: -1 896 -45927 573440 -2734375 5878656 -5764801 2097152
9: 1 -2048 183708 -3670016 27343750 -94058496 161414428 -134217728 4304672
[Reformatted by _Wolfdieter Lang_, Oct 12 2022]
-----------------------------------------------------------------------------
p(2,x) = -1+2*x = (1/(2*x))*x*(d/dx)*x*(d/dx)*(x-1)^2.
- A. Sidi, Practical Extrapolation Methods: Theory and Applications, Cambridge University Press, Cambridge, 2003.
- Wolfdieter Lang, On a Certain Family of Sidi Polynomials, May 2023.
- Harlan J. Brothers, Pascal's triangle, Sidi polynomials, and powers of e, Missouri J. Math. Sci. (2025) Vol. 37, No. 1, 67-78.
- Doron S. Lubinsky and Herbert Stahl, Some Explicit Biorthogonal Polynomials, (IN) Approximation Theory XI, (C.K. Chui, M. Neamtu, L. Schumaker, eds.), Nashboro Press, Nashville, 2005, pp. 279-285.
- Avram Sidi, Numerical Quadrature and Nonlinear Sequence Transformations; Unified Rules for Efficient Computation of Integrals with Algebraic and Logarithmic Endpoint Singularities, Math. Comp., 35 (1980), 851-874.
-
# Assuming offset 0.
seq(seq((-1)^(n-k)*binomial(n, k)*(k+1)^n, k=0..n), n=0..8);
# Alternative:
egf := x -> 1/(exp(LambertW(-exp(-x)*x*y) + x) - x*y):
ser := x -> series(egf(x), x, 12):
row := n -> seq(coeff(n!*coeff(ser(x), x, n), y, k), k=0..n):
seq(print(row(n)), n = 0..8); # Peter Luschny, Oct 21 2022
-
p[n_, x_] := p[n, x] = Nest[ x*D[#, x]& , (x-1)^n, n]/(n*x); a[n_, m_] := Coefficient[ p[n, x], x, m]; Table[a[n, m], {n, 1, 9}, {m, 0, n-1}] // Flatten (* Jean-François Alcover, Jul 03 2013 *)
-
tabl(nn) = {for (n=1, nn, for (m=0, n-1, print1((-1)^(n-m-1)*binomial(n-1, m)*(m+1)^(n-1), ", ");); print(););} \\ Michel Marcus, May 17 2013
A075497
Stirling2 triangle with scaled diagonals (powers of 2).
Original entry on oeis.org
1, 2, 1, 4, 6, 1, 8, 28, 12, 1, 16, 120, 100, 20, 1, 32, 496, 720, 260, 30, 1, 64, 2016, 4816, 2800, 560, 42, 1, 128, 8128, 30912, 27216, 8400, 1064, 56, 1, 256, 32640, 193600, 248640, 111216, 21168, 1848, 72, 1
Offset: 1
Triangle begins:
[1];
[2,1];
[4,6,1]; p(3,x) = x*(4 + 6*x + x^2).
...;
Triangle (0, 2, 0, 4, 0, 6, 0, 8, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, ...) begins:
1
0, 1
0, 2, 1
0, 4, 6, 1
0, 8, 28, 12, 1
0, 16, 120, 100, 20, 1. - _Philippe Deléham_, Feb 13 2013
From _Peter Bala_, Feb 23 2025: (Start)
The array factorizes as
/ 1 \ /1 \ /1 \ /1 \
| 2 1 | | 2 1 ||0 1 ||0 1 |
| 4 6 1 | = | 4 4 1 ||0 2 1 ||0 0 1 | ...
| 8 28 12 1 | | 8 12 6 1 ||0 4 4 1 ||0 0 2 1 |
|16 120 100 20 1| |16 32 24 8 1||0 8 12 6 1 ||0 0 4 4 1 |
|... | |... ||... ||... |
where, in the infinite product on the right-hand side, the first array is the Riordan array (1/(1 - 2*x), x/(1 - 2*x)) = P^2, where P denotes Pascal's triangle. See A038207. Cf. A143494. (End)
- Alois P. Heinz, Rows n = 1..141, flattened
- Peter Bala, The white diamond product of power series
- Peter Bala, Factorising (r,b)-Stirling arrays
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- John R. Britnell and Mark Wildon, Bell numbers, partition moves and the eigenvalues of the random-to-top shuffle in types A, B and D, arXiv 1507.04803 [math.CO], 2015.
- Roberto B. Corcino, The (r, β)-Stirling Numbers, The Mindanao Forum, Vol. XIV, No.2, pp. 91-99, 1999.
- Roberto B. Corcino and Maribeth B. Montero, The (r, β)-Stirling Numbers in the Context of 0-1 Tableau, Jour. Math. Soc. of the Philippines, ISSN 0115-6926, Vol. 32, No. 1 (2009), pp. 45-52
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
- Wolfdieter Lang, First 10 rows.
- Toufik Mansour, Generalization of some identities involving the Fibonacci numbers, arXiv:math/0301157 [math.CO], 2003.
- Emanuele Munarini, Characteristic, admittance and matching polynomials of an antiregular graph, Appl. Anal. Discrete Math 3 (1) (2009) 157-176.
-
with(combinat):
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(x^j*multinomial(n, n-i*j, i$j)/j!*add(
binomial(i, 2*k), k=0..i/2)^j*b(n-i*j, i-1), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)):
seq(T(n), n=1..12); # Alois P. Heinz, Aug 13 2015
# Alternatively, giving the triangle in the form displayed in the Example section:
gf := exp(x*exp(z)*sinh(z)):
X := n -> series(gf, z, n+2):
Z := n -> n!*expand(simplify(coeff(X(n), z, n))):
A075497_row := n -> op(PolynomialTools:-CoefficientList(Z(n), x)):
seq(A075497_row(n), n=0..9); # Peter Luschny, Jan 14 2018
-
Table[(2^(n - m)) StirlingS2[n, m], {n, 9}, {m, n}] // Flatten (* Michael De Vlieger, Dec 31 2015 *)
-
for(n=1, 11, for(m=1, n, print1(2^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
-
# uses[inverse_bell_transform from A265605]
multifact_2_2 = lambda n: prod(2*k + 2 for k in (0..n-1))
inverse_bell_matrix(multifact_2_2, 9) # Peter Luschny, Dec 31 2015
A025966
Expansion of 1/((1-2x)(1-4x)(1-6x)(1-8x)).
Original entry on oeis.org
1, 20, 260, 2800, 27216, 248640, 2182720, 18656000, 156544256, 1296655360, 10641146880, 86744985600, 703688298496, 5688011079680, 45855653642240, 368956766617600, 2964331947687936, 23790756829593600
Offset: 0
-
CoefficientList[Series[1/((1-2x)(1-4x)(1-6x)(1-8x)),{x,0,40}],x] (* Harvey P. Dale, Apr 13 2019 *)
-
Vec(1/((1-2*x)*(1-4*x)*(1-6*x)*(1-8*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
Original entry on oeis.org
1, 42, 1064, 21168, 365232, 5743584, 84713728, 1193127936, 16239711488, 215394955776, 2800564795392, 35851775791104, 453374980255744, 5677724481773568, 70550796621971456, 871159544637161472
Offset: 0
Showing 1-4 of 4 results.
Comments