cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A039692 Jabotinsky-triangle related to A039647.

Original entry on oeis.org

1, 3, 1, 8, 9, 1, 42, 59, 18, 1, 264, 450, 215, 30, 1, 2160, 4114, 2475, 565, 45, 1, 20880, 43512, 30814, 9345, 1225, 63, 1, 236880, 528492, 420756, 154609, 27720, 2338, 84, 1, 3064320, 7235568, 6316316, 2673972, 594489, 69552, 4074, 108, 1
Offset: 1

Views

Author

Keywords

Comments

Triangle gives the nonvanishing entries of the Jabotinsky matrix for F(z)= A(z)/z = 1/(1-z-z^2) where A(z) is the g.f. of the Fibonacci numbers A000045. (Notation of F(z) as in Knuth's paper.)
E(n,x) := Sum_{m=1..n} a(n,m)*x^m, E(0,x)=1, are exponential convolution polynomials: E(n,x+y) = Sum_{k=0..n} binomial(n,k)*E(k,x)*E(n-k,y) (cf. Knuth's paper with E(n,x)= n!*F(n,x)).
E.g.f. for E(n,x): (1 - z - z^2)^(-x).
Explicit a(n,m) formula: see Knuth's paper for f(n,m) formula with f(k)= A039647(n).
E.g.f. for the m-th column sequence: ((-log(1 - z - z^2))^m)/m!.
Also the Bell transform of n!*(F(n)+F(n+2)), F(n) the Fibonacci numbers. For the definition of the Bell transform see A264428 and the link. - Peter Luschny, Jan 16 2016

Examples

			1;
3, 1;
8, 9, 1;
42, 59, 18, 1;
264, 450, 215, 30, 1;
		

Crossrefs

Cf. A039647, A000032, A000045. Another version of this triangle is in A194938.

Programs

  • Maple
    A000032 := proc(n) option remember; coeftayl( (2-x)/(1-x-x^2),x=0,n) ; end: A039647 := proc(n) (n-1)!*A000032(n) ; end: A039692 := proc(n,m) option remember ; if m = 1 then A039647(n) ; else add( binomial(n-1,j-1)*A039647(j)*procname(n-j,m-1),j=1..n-m+1) ; fi; end: # R. J. Mathar, Jun 01 2009
  • Mathematica
    t[n_, m_] := n!*Sum[StirlingS1[k, m]*Binomial[k, n-k]*(-1)^(k+m)/k!, {k, m, n}]; Table[t[n, m], {n, 1, 9}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 21 2013, after Vladimir Kruchinin *)
  • Maxima
    T(n,m) := n!*sum((stirling1(k,m)*binomial(k,n-k))*(-1)^(k+m)/k!,k,m,n); /* Vladimir Kruchinin, Mar 26 2013 */
    
  • PARI
    T(n,m) = n!*sum(k=m,n, (stirling(k,m,1)*binomial(k,n-k))*(-1)^(k+m)/k!);
    for(n=1,10,for(k=1,n,print1(T(n,k),", "));print());
    /* Joerg Arndt, Mar 27 2013 */
    
  • Sage
    # uses[bell_matrix from A264428]
    # Adds 1,0,0,0, ... as column 0 to the left side of the triangle.
    bell_matrix(lambda n: factorial(n)*(fibonacci(n)+fibonacci(n+2)), 8) # Peter Luschny, Jan 16 2016

Formula

a(n, 1)= A039647(n)=(n-1)!*L(n), L(n) := A000032(n) (Lucas); a(n, m) = Sum_{j=1..n-m+1} binomial(n-1, j-1)*A039647(j)*a(n-j, m-1), n >= m >= 2.
Conjectured row sums: sum_{m=1..n} a(n,m) = A005442(n). - R. J. Mathar, Jun 01 2009
T(n,m) = n! * Sum_{k=m..n} stirling1(k,m)*binomial(k,n-k)*(-1)^(k+m)/k!. - Vladimir Kruchinin, Mar 26 2013

A080599 Expansion of e.g.f.: 2/(2-2*x-x^2).

Original entry on oeis.org

1, 1, 3, 12, 66, 450, 3690, 35280, 385560, 4740120, 64751400, 972972000, 15949256400, 283232149200, 5416632421200, 110988861984000, 2425817682288000, 56333385828720000, 1385151050307024000, 35950878932544576000, 982196278209226080000, 28175806418228108640000
Offset: 0

Views

Author

Detlef Pauly (dettodet(AT)yahoo.de), Feb 24 2003

Keywords

Comments

Number of ordered partitions of {1,..,n} with at most 2 elements per block. - Bob Proctor, Apr 18 2005
In other words, number of preferential arrangements of n things (see A000670) in which each clump has size 1 or 2. - N. J. A. Sloane, Apr 13 2014
Recurrences (of the hypergeometric type of the Jovovic formula) mean: multiplying the sequence vector from the left with the associated matrix of the recurrence coefficients (here: an infinite lower triangular matrix with the natural numbers in the main diagonal and the triangular series in the subdiagonal) recovers the sequence up to an index shift. In that sense, this sequence here and many other sequences of the OEIS are eigensequences. - Gary W. Adamson, Feb 14 2011
Number of intervals in the weak (Bruhat) order of S_n that are Boolean algebras. - Richard Stanley, May 09 2011
a(n) = D^n(1/(1-x)) evaluated at x = 0, where D is the operator sqrt(1+2*x)*d/dx. Cf. A000085, A005442 and A052585. - Peter Bala, Dec 07 2011
From Gus Wiseman, Jul 04 2020: (Start)
Also the number of (1,1,1)-avoiding or cubefree sequences of length n covering an initial interval of positive integers. For example, the a(0) = 1 through a(3) = 12 sequences are:
() (1) (11) (112)
(12) (121)
(21) (122)
(123)
(132)
(211)
(212)
(213)
(221)
(231)
(312)
(321)
(End)

Examples

			From _Gus Wiseman_, Jul 04 2020: (Start)
The a(0) = 1 through a(3) = 12 ordered set partitions with block sizes <= 2 are:
  {}  {{1}}  {{1,2}}    {{1},{2,3}}
             {{1},{2}}  {{1,2},{3}}
             {{2},{1}}  {{1,3},{2}}
                        {{2},{1,3}}
                        {{2,3},{1}}
                        {{3},{1,2}}
                        {{1},{2},{3}}
                        {{1},{3},{2}}
                        {{2},{1},{3}}
                        {{2},{3},{1}}
                        {{3},{1},{2}}
                        {{3},{2},{1}}
(End)
		

Crossrefs

Column k=2 of A276921.
Cubefree numbers are A004709.
(1,1)-avoiding patterns are A000142.
(1,1,1)-avoiding compositions are A232432.
(1,1,1)-matching patterns are A335508.
(1,1,1)-avoiding permutations of prime indices are A335511.
(1,1,1)-avoiding compositions are ranked by A335513.
(1,1,1,1)-avoiding patterns are A189886.

Programs

  • Magma
    [n le 2 select 1 else (n-1)*Self(n-1) + Binomial(n-1,2)*Self(n-2): n in [1..31]]; // G. C. Greubel, Jan 31 2023
    
  • Maple
    a:= n-> n! *(Matrix([[1,1], [1/2,0]])^n)[1,1]:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 01 2009
    a:= gfun:-rectoproc({a(n) = n*a(n-1)+(n*(n-1)/2)*a(n-2),a(0)=1,a(1)=1},a(n),remember):
    seq(a(n), n=0..40); # Robert Israel, Nov 01 2015
  • Mathematica
    Table[n!*SeriesCoefficient[-2/(-2+2*x+x^2),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 13 2012 *)
    Round@Table[n! ((1+Sqrt[3])^(n+1) - (1-Sqrt[3])^(n+1))/(2^(n+1) Sqrt[3]), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 31 2015 *)
  • PARI
    Vec(serlaplace((2/(2-2*x-x^2) + O(x^30)))) \\ Michel Marcus, Nov 02 2015
    
  • SageMath
    A002605=BinaryRecurrenceSequence(2,2,0,1)
    def A080599(n): return factorial(n)*A002605(n+1)/2^n
    [A080599(n) for n in range(41)] # G. C. Greubel, Jan 31 2023

Formula

a(n) = n*a(n-1) + (n*(n-1)/2)*a(n-2). - Vladeta Jovovic, Aug 22 2003
E.g.f.: 1/(1-x-x^2/2). - Richard Stanley, May 09 2011
a(n) ~ n!*((1+sqrt(3))/2)^(n+1)/sqrt(3). - Vaclav Kotesovec, Oct 13 2012
a(n) = n!*((1+sqrt(3))^(n+1) - (1-sqrt(3))^(n+1))/(2^(n+1)*sqrt(3)). - Vladimir Reshetnikov, Oct 31 2015
a(n) = A090932(n) * A002530(n+1). - Robert Israel, Nov 01 2015

A005923 From solution to a difference equation.

Original entry on oeis.org

1, 3, 13, 81, 673, 6993, 87193, 1268361, 21086113, 394368993, 8195330473, 187336699641, 4671623344753, 126204511859793, 3671695236949753, 114451527759954921, 3805443567253430593, 134436722612325267393, 5028681509898733705033, 198550708258762398282201
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of A000557. - Vladimir Reshetnikov, Oct 29 2015

References

  • Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin's summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56. See p. 49.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Round@Table[Sum[Binomial[n, k] (-1)^k (PolyLog[-k, 1-GoldenRatio] - PolyLog[-k, GoldenRatio])/Sqrt[5] , {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 29 2015 *)

Formula

E.g.f.: exp(x)/(1-2*sinh(x)). - Sander Zwegers (s.zwegers(AT)hetnet.nl), Jun 28 2007
E.g.f.: 1/( U(0) -1 ) where U(k) = 1 + 1/(2^k - 2*x*4^k/(2*x*2^k - (k+1)/U(k+1) )); (continued fraction 3rd kind, 3-step ). - Sergei N. Gladkovskii, Dec 05 2012
a(n) ~ n! * phi / (sqrt(5) * (log(phi))^(n+1)), where phi is the golden ratio. - Vaclav Kotesovec, Nov 27 2017
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k + 1) * binomial(n,k) * (2^k + 1) * a(n-k). - Ilya Gutkovskiy, Jan 16 2020
a(n) = A000556(n) + A000557(n) for n>0. - Greg Dresden, May 13 2022

Extensions

More terms from Vladeta Jovovic, Nov 23 2001

A005443 a(n) = n! * Fibonacci(n).

Original entry on oeis.org

0, 1, 2, 12, 72, 600, 5760, 65520, 846720, 12337920, 199584000, 3552595200, 68976230400, 1450895846400, 32866215782400, 797681364480000, 20650793619456000, 568032822669312000, 16543733655601152000, 508598164809326592000, 16458582085314969600000
Offset: 0

Views

Author

Keywords

Comments

From Enrique Navarrete, Aug 28 2025: (Start)
Number of ways to seat n people on linearly ordered benches placing an odd number of people on each bench.
For example, a(7) = 65520 since the number of ways are (number of people in parentheses):
1 bench (7): 5040 ways;
3 benches (5,1,1): 15120 ways;
3 benches (3,3,1): 15120 ways;
5 benches (3,1,1,1,1): 25200 ways;
7 benches (1,1,1,1,1,1,1): 5040 ways.
If the benches are not linearly ordered the number of ways is A088009. (End)

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Factorial(n)*Fibonacci(n): n in [0..30]]; // G. C. Greubel, Nov 20 2022
    
  • Maple
    ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 1)}, labelled]: seq(combstruct[count](ZL, size=n), n=0..18); # Zerinvary Lajos, Mar 26 2008
  • Mathematica
    Table[Fibonacci[n]*n!, {n, 0, 25}] (* Zerinvary Lajos, Jul 09 2009 *)
  • PARI
    a(n) = n!*fibonacci(n); \\ Michel Marcus, Oct 30 2015
    
  • SageMath
    [fibonacci(n)*factorial(n) for n in range(31)] # G. C. Greubel, Nov 20 2022

Formula

a(n) = A039948(n, 1).
E.g.f.: x/(1-x-x^2). - Geoffrey Critzer, Sep 01 2013
a(n) = n*a(n-1) + n*(n-1)*a(n-2). - G. C. Greubel, Nov 20 2022

Extensions

More terms from James Sellers, Dec 24 1999

A005444 From a Fibonacci-like differential equation.

Original entry on oeis.org

1, 1, 3, 8, 50, 214, 2086, 11976, 162816, 1143576, 20472504, 165910128, 3785092032, 33908109936, 967508478192, 9252123203712, 327062428940160, 3236057604910080, 141403289873955840, 1404243298160352000, 76168955916831029760, 735206146073008508160
Offset: 0

Views

Author

Keywords

Comments

Sequence is signed: first negative term is a(35) = -230450728485788167742674544892530875760640. - Vladeta Jovovic, Sep 29 2003

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [(&+[Factorial(j)*Fibonacci(j+1)*StirlingFirst(n,j): j in [0..n]]): n in [0..30]]; // G. C. Greubel, Nov 21 2022
    
  • Mathematica
    CoefficientList[Series[1/(1-Log[1+x]-(Log[1+x])^2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 01 2013 *)
  • PARI
    a(n) = sum(k=0, n, k!*fibonacci(k+1)*stirling(n, k, 1)); \\ Michel Marcus, Oct 30 2015
    
  • SageMath
    def A005444(n): return sum((-1)^(n+k)*factorial(k)*fibonacci(k+1)* stirling_number1(n,k) for k in (0..n))
    [A005444(n) for n in range(31)] # G. C. Greubel, Nov 21 2022

Formula

a(n) = Sum_{k=0..n} k!*Fibonacci(k+1)*Stirling1(n, k).
E.g.f.: 1/(1 - log(1+x) - log(1+x)^2). - Vladeta Jovovic, Sep 29 2003
a(n) ~ n! * (-1)^n * exp(n*(1+sqrt(5))/2) / (sqrt(5)*(exp((1+sqrt(5))/2)-1)^(n+1)). - Vaclav Kotesovec, Oct 01 2013

A039948 A triangle related to A000045 (Fibonacci numbers).

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 18, 12, 3, 1, 120, 72, 24, 4, 1, 960, 600, 180, 40, 5, 1, 9360, 5760, 1800, 360, 60, 6, 1, 105840, 65520, 20160, 4200, 630, 84, 7, 1, 1370880, 846720, 262080, 53760, 8400, 1008, 112, 8, 1, 19958400, 12337920, 3810240, 786240, 120960, 15120, 1512, 144, 9, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins :
    1;
    1,   1;
    4,   2,   1;
   18,  12,   3,  1;
  120,  72,  24,  4, 1;
  960, 600, 180, 40, 5, 1;
... - _Philippe Deléham_, Nov 08 2011
		

Crossrefs

Programs

  • Magma
    [(Factorial(n)/Factorial(k))*Fibonacci(n-k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2022
    
  • Mathematica
    T[n_,k_]:= (n!/k!)*Fibonacci[n-k+1];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 20 2022 *)
  • SageMath
    def A039948(n, k): return factorial(n-k)*binomial(n,k)*fibonacci(n-k+1)
    flatten([[A039948(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 20 2022

Formula

T(n, m) = n!*Fibonacci(n-m+1)/m!, n >= m >= 0.
T(n, 0) = A005442(n).
T(n, 1) = A005443(n).
E.g.f. for column m: x^m/(m!*(1-x-x^2)), m >= 0.
From G. C. Greubel, Nov 20 2022: (Start)
T(n, n-1) = A000027(n).
T(n, n-2) = 4*A000217(n-1), n >= 2.
T(n, n-3) = 18*A000292(n-2), n >= 3.
T(n, n-4) = 5! * A000332(n), n >= 4.
T(n, n-5) = 8 * 5! * A000389(n), n >= 5.
T(n, n-6) = 13 * 6! * A000579(n), n >= 6.
T(n, n-7) = 21 * 7! * A000580(n), n >= 7.
T(n, n-8) = 34 * 8! * A000581(n), n >= 8.
T(n, n-9) = 55 * 9! * A000582(n), n >= 9.
T(n, n-10) = 89 * 10! * A001287(n), n >= 10.
T(n, n-11) = 12 * 12! * A001288(n), n >= 11.
T(n, n-12) = 233 * 12! * A010965(n), n >= 12.
T(n, n-13) = 89 * 13! * A010966(n), n >= 13.
Sum_{k=0..n} T(n, k) = A110313(n). (End)

A005445 From a Fibonacci-like differential equation.

Original entry on oeis.org

0, 1, 1, 8, 16, 224, 608, 13320, 41760, 1366152, 4440312, 215100192, 655723440, 48242081328, 121651212720, 14627299801728, 24367884018048, 5768946415383552, 2780730890516736, 2872938805170308352, -2941729703083507968, 1764460446550873413120
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [(&+[Factorial(j)*Fibonacci(j)*StirlingFirst(n,j): j in [0..n]]): n in [0..30]]; // G. C. Greubel, Nov 21 2022
    
  • Mathematica
    CoefficientList[Series[Log[1+x]/(1-Log[1+x]-(Log[1+x])^2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 01 2013 *)
  • PARI
    a(n) = sum(k=0, n, k!*fibonacci(k)*stirling(n, k, 1)); \\ Michel Marcus, Oct 30 2015
    
  • SageMath
    def A005445(n): return sum((-1)^(n+k)*factorial(k)*fibonacci(k)* stirling_number1(n,k) for k in range(n+1))
    [A005445(n) for n in range(31)] # G. C. Greubel, Nov 21 2022

Formula

From Vladeta Jovovic, Sep 29 2003: (Start)
a(n) = Sum_{k=0..n} Stirling1(n, k)*k!*Fibonacci(k).
E.g.f.: log(1+x)/(1 - log(1+x) - log(1+x)^2). (End)
a(n) ~ n! * (-1)^(n+1) * (1+1/sqrt(5)) * exp(n*(1+sqrt(5))/2) /(2*(exp((1+sqrt(5))/2)-1)^(n+1)). - Vaclav Kotesovec, Oct 01 2013

Extensions

More terms from Vladeta Jovovic, Sep 29 2003

A052585 E.g.f. 1/(1-x-2*x^2).

Original entry on oeis.org

1, 1, 6, 30, 264, 2520, 30960, 428400, 6894720, 123742080, 2478470400, 54486432000, 1308153369600, 34005760588800, 952248474777600, 28566146568960000, 914137612996608000, 31080323154456576000, 1118898035934142464000, 42518003720397004800000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Laguerre transform is A052563. - Paul Barry, Aug 08 2008

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1 -x -2*x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 17 2018
  • Maple
    spec := [S,{S=Sequence(Union(Z,Prod(Z,Union(Z,Z))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{m = 50}, CoefficientList[Series[-1/(-1 + x + 2*x^2), {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 17 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1 -x -2*x^2))) \\ G. C. Greubel, May 17 2018
    

Formula

E.g.f.: 1/(1 -x -2*x^2).
Recurrence: a(1)=1, a(0)=1, (-2*n^2-6*n-4)*a(n)+(-2-n)*a(n+1)+a(n+2)=0.
a(n) = Sum(1/9*(1+4*_alpha)*_alpha^(-1-n), _alpha=RootOf(-1+_Z+2*_Z^2))*n!.
a(n) = n!*A001045(n+1). - Paul Barry, Aug 08 2008
a(n) = D^n(1/(1-x)) evaluated at x = 0, where D is the operator sqrt(1+8*x)*d/dx. Cf. A080599 and A005442. - Peter Bala, Dec 07 2011

Extensions

a(18)-a(19) added by G. C. Greubel, May 17 2018

A364324 a(n) = n!*tribonacci(n+2).

Original entry on oeis.org

1, 1, 4, 24, 168, 1560, 17280, 221760, 3265920, 54069120, 994291200, 20118067200, 444034483200, 10617070464000, 273391121203200, 7542665754624000, 221969877921792000, 6940528784437248000, 229781192298577920000, 8030036368187817984000, 295390797322766745600000
Offset: 0

Views

Author

Enrique Navarrete, Jul 18 2023

Keywords

Comments

a(n) is the number of ways to partition [n] into blocks of size at most 3, order the blocks, and order the elements within each block.

Examples

			a(5) = 1560 since the number of ways to partition [5] into blocks of size at most 3, order the blocks, and order the elements within each block are the following:
1) 1,2,3,4,5: 120 ordered blocks; 120 ways;
2) 12,3,4,5: 240 ordered blocks; 480 ways;
3) 12,34,5: 90 ordered blocks; 360 ways;
4) 123,45: 20 ordered blocks; 240 ways;
5) 123,4,5: 60 ordered blocks; 360 ways.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-i)*binomial(n, i)*i!, i=1..min(n, 3)))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 18 2023
  • Mathematica
    With[{m = 21}, Range[0, m - 1]! * LinearRecurrence[{1, 1, 1}, {1, 1, 2}, m]] (* Amiram Eldar, Jul 28 2023 *)

Formula

E.g.f.: 1/(1-x-x^2-x^3).
a(n) = A000142(n) * A000073(n+2).

A005922 a(1)=1; a(n) = n!*Fibonacci(n+2), n > 1.

Original entry on oeis.org

1, 6, 30, 192, 1560, 15120, 171360, 2217600, 32296320, 522547200, 9300614400, 180583603200, 3798482688000, 86044973414400, 2088355965696000, 54064489070592000, 1487129136869376000, 43312058119249920000
Offset: 1

Views

Author

Keywords

Comments

From solution to a difference equation.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Extensions

More terms and better description from Vladeta Jovovic, Jan 23 2005
Showing 1-10 of 20 results. Next