cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A039948 A triangle related to A000045 (Fibonacci numbers).

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 18, 12, 3, 1, 120, 72, 24, 4, 1, 960, 600, 180, 40, 5, 1, 9360, 5760, 1800, 360, 60, 6, 1, 105840, 65520, 20160, 4200, 630, 84, 7, 1, 1370880, 846720, 262080, 53760, 8400, 1008, 112, 8, 1, 19958400, 12337920, 3810240, 786240, 120960, 15120, 1512, 144, 9, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins :
    1;
    1,   1;
    4,   2,   1;
   18,  12,   3,  1;
  120,  72,  24,  4, 1;
  960, 600, 180, 40, 5, 1;
... - _Philippe Deléham_, Nov 08 2011
		

Crossrefs

Programs

  • Magma
    [(Factorial(n)/Factorial(k))*Fibonacci(n-k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2022
    
  • Mathematica
    T[n_,k_]:= (n!/k!)*Fibonacci[n-k+1];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 20 2022 *)
  • SageMath
    def A039948(n, k): return factorial(n-k)*binomial(n,k)*fibonacci(n-k+1)
    flatten([[A039948(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 20 2022

Formula

T(n, m) = n!*Fibonacci(n-m+1)/m!, n >= m >= 0.
T(n, 0) = A005442(n).
T(n, 1) = A005443(n).
E.g.f. for column m: x^m/(m!*(1-x-x^2)), m >= 0.
From G. C. Greubel, Nov 20 2022: (Start)
T(n, n-1) = A000027(n).
T(n, n-2) = 4*A000217(n-1), n >= 2.
T(n, n-3) = 18*A000292(n-2), n >= 3.
T(n, n-4) = 5! * A000332(n), n >= 4.
T(n, n-5) = 8 * 5! * A000389(n), n >= 5.
T(n, n-6) = 13 * 6! * A000579(n), n >= 6.
T(n, n-7) = 21 * 7! * A000580(n), n >= 7.
T(n, n-8) = 34 * 8! * A000581(n), n >= 8.
T(n, n-9) = 55 * 9! * A000582(n), n >= 9.
T(n, n-10) = 89 * 10! * A001287(n), n >= 10.
T(n, n-11) = 12 * 12! * A001288(n), n >= 11.
T(n, n-12) = 233 * 12! * A010965(n), n >= 12.
T(n, n-13) = 89 * 13! * A010966(n), n >= 13.
Sum_{k=0..n} T(n, k) = A110313(n). (End)

A320352 Expansion of e.g.f. (exp(x) - 1)/(exp(x) - exp(2*x) + 1).

Original entry on oeis.org

0, 1, 3, 19, 159, 1651, 20583, 299419, 4977759, 93097891, 1934655063, 44224195819, 1102820674959, 29792843865331, 866769668577543, 27018340680076219, 898343366411181759, 31736205208791131971, 1187110673532381604023, 46871464129796857140619, 1948059531745350527058159
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 11 2018

Keywords

Comments

From Peter Bala, Aug 19 2025: (Start)
Conjecture: Let k be a positive integer. The sequence obtained by reducing a(n) modulo k is eventually periodic with the period dividing phi(k) = A000010(k). For example, modulo 9 we obtain the sequence [0, 1, 3, 1, 6, 4, 0, 7, 3, 1, 6, 4, 0, 7, 3, 1, 6, 4, 0, 7, ...] with an apparent period of 6 = phi(9) beginning at n = 2. Cf. A004123.(End)

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series((exp(x) - 1)/(exp(x) - exp(2*x) + 1), x=0, 22), x, n), n=0..21); # Paolo P. Lava, Jan 09 2019
  • Mathematica
    nmax = 20; CoefficientList[Series[(Exp[x] - 1)/(Exp[x] - Exp[2 x] + 1), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[StirlingS2[n, k] Fibonacci[k] k!, {k, 0, n}], {n, 0, 20}]

Formula

E.g.f.: (1 + sinh(x) - cosh(x))/(1 - 2*sinh(x)).
a(n) = Sum_{k=0..n} Stirling2(n,k)*Fibonacci(k)*k!.
a(n) ~ n! / (sqrt(5) * phi^2 * (log(phi))^(n+1)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 12 2018

A065140 a(n) = 2^n*(2*n)!.

Original entry on oeis.org

1, 4, 96, 5760, 645120, 116121600, 30656102400, 11158821273600, 5356234211328000, 3278015337332736000, 2491291656372879360000, 2301953490488540528640000, 2541356653499348743618560000, 3303763649549153366704128000000, 4995290638118319890456641536000000
Offset: 0

Views

Author

Karol A. Penson, Oct 16 2001

Keywords

Comments

From Enrique Navarrete, Aug 29 2025: (Start)
For n > 0, 1/2*a(n) is the number of ways to seat 2*n people on linearly ordered benches placing an even number of people (>=2) on each bench.
For example, 1/2*a(4)=322560 since the number of ways are (number of people in parentheses):
1 bench (8): 40320 ways;
2 benches (6,2): 80640 ways;
2 benches (4,4): 40320 ways;
3 benches (4,2,2): 120960 ways;
4 benches (2,2,2,2): 40320 ways.
If the benches are not linearly ordered the number of ways is A088026.
If we seat an odd number of people on linearly ordered benches the number of ways is A005443. (End)

Crossrefs

Programs

  • Mathematica
    Table[2^n (2n)!,{n,0,15}] (* Harvey P. Dale, Nov 28 2011 *)
  • PARI
    { for (n=0, 100, write("b065140.txt", n, " ", 2^n*(2*n)!) ) } \\ Harry J. Smith, Oct 11 2009

Formula

Hypergeometric generating function, in Maple notation: 1/sqrt(1-8*x), i.e., a(0)=1, a(n)=round(evalf(subs(x=0, n!*diff(1/(sqrt(1-8*x)), x$n)))), for n>=1.
Integral representation as n-th moment of a positive function on a positive half-axis: a(n) = Integral_{x>=0} x^n*exp(-sqrt(x/2))/(2*sqrt(2*x)) dx, for n>=0.
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - 4*x*(k+1)*(2*k+1)/(4*x*(k+1)*(2*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 07 2013
From Amiram Eldar, Aug 05 2020: (Start)
Sum_{n>=0} 1/a(n) = cosh(sqrt(2)/2).
Sum_{n>=0} (-1)^n/a(n) = cos(sqrt(2)/2). (End)
From Alexandre Herrera, Apr 18 2025: (Start)
Sum_{n>=0} x^(4*n)*(-1)^(n)/a(2n) = cos(x/2)*cosh(x/2).
Sum_{n>=0} x^(4*n+2)*(-1)^(n)/a(2n+1) = sin(x/2)*sinh(x/2).
Sum_{n>=0} x^(2*n)*(-1)^(n)/a(n) = cos(x*sqrt(2)/2).
Sum_{n>=0} x^(2*n)/a(n) = cosh(x*sqrt(2)/2). (End)

A052567 E.g.f.: (1-x)^2/(1-3*x+x^2).

Original entry on oeis.org

1, 1, 6, 48, 504, 6600, 103680, 1900080, 39795840, 937681920, 24548832000, 706966444800, 22210346188800, 755916735974400, 27706219904563200, 1088037381150720000, 45576301518139392000, 2028445209752113152000, 95589693062063456256000, 4754884242802394308608000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Maple
    spec := [S,{S=Sequence(Prod(Z,Sequence(Z),Sequence(Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{nn=20},CoefficientList[Series[(1-x)^2/(1-3x+x^2),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 06 2021 *)

Formula

E.g.f.: (-1+x)^2/(1-3*x+x^2).
Recurrence: {a(1)=1, a(0)=1, a(2)=6, (n^2+3*n+2)*a(n)+(-6-3*n)*a(n+1)+a(n+2)=0}
Sum(-1/5*(3*_alpha-2)*_alpha^(-1-n), _alpha=RootOf(_Z^2-3*_Z+1))*n!
a(n) = n! * Fibonacci(2*n) for n > 0. - Ilya Gutkovskiy, Jul 17 2021

A080833 E.g.f.: exp( x/(1 - x - x^2) ).

Original entry on oeis.org

1, 1, 3, 19, 145, 1401, 16051, 213403, 3223809, 54514225, 1019601091, 20890209891, 465156779473, 11181638663209, 288536019179955, 7953590111627371, 233211718410856321, 7246720953253750113, 237849724555558441219, 8221578401608012672435, 298505383888840158941841
Offset: 0

Views

Author

Emanuele Munarini, Mar 28 2003

Keywords

Comments

From Peter Bala, Mar 25 2022: (Start)
The sequence terms are odd. 3 divides a(3*n-1), 9 divides a(9*n-1) and 27 divides a(27*n-1); 5 divides a(5*n+4), 25 divides a(25*n+9) and 125 divides a(125*n+34); 7 divides a(7*n+6), 49 divides a(49*n+34) and 343 divides a(343*n + 83); 15 divides a(15*n+14) and 17 divides a(17*n+13).
More generally, the congruence a(n+k) == a(n) (mod k) holds for all n and k. It follows that the sequence obtained by taking a(n) modulo a fixed positive integer k is periodic with exact period dividing k. For example, taken modulo 7 the sequence becomes [1, 1, 3, 5, 5, 1, 0, 1, 1, 3, 3, 5, 5, 1, 0, ...], a purely periodic sequence with period 7. (End)

Crossrefs

Cf. A005443.

Programs

  • Mathematica
    CoefficientList[Series[E^(x/(1-x-x^2)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 27 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(x/(1-x-x^2)))) \\ Michel Marcus, Jun 07 2021

Formula

E.g.f.: exp( x/(1 - x - x^2) ).
a(n) = n!*sum{i=0..n, sum{j=0..n, C(i+j-1, j)*C(j, n-i-j)/i!}}. - Paul Barry, Aug 29 2005
E.g.f.: 1 + x*(E(0)-1)/(x+1) where E(k) = 1 + 1/(k+1)/(1-x-x^2)/(1-x/(x+1/E(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 27 2013
Recurrence: a(n) = (2*n-1)*a(n-1) + (n-2)*(n-1)*a(n-2) - (n-2)*(n-1)*(2*n-7)*a(n-3) - (n-4)*(n-3)*(n-2)*(n-1)*a(n-4). - Vaclav Kotesovec, Jun 27 2013
a(n) ~ ((1+sqrt(5))/2)^n*exp(2*sqrt(n)/5^(1/4)-n-1/10)*n^(n-1/4)/(sqrt(2)*5^(1/8)). - Vaclav Kotesovec, Jun 27 2013
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * k! * Fibonacci(k) * a(n-k). - Ilya Gutkovskiy, Jun 07 2021

A100404 a(n) = L(n) * n! where L(n) are the Lucas numbers.

Original entry on oeis.org

2, 1, 6, 24, 168, 1320, 12960, 146160, 1895040, 27578880, 446342400, 7943443200, 154238515200, 3244277836800, 73491299481600, 1783667837952000, 46176597282816000, 1270159805730816000, 36992915271696384000, 1137260043722170368000, 36802508677688033280000
Offset: 0

Views

Author

Parthasarathy Nambi, Jan 11 2005

Keywords

Examples

			If n=3, L(3) * 3! = 24.
If n=4, L(4) * 4! = 168.
		

Crossrefs

Programs

  • Mathematica
    Table[LucasL[n, 1]*n!, {n, 0, 20}] (* Zerinvary Lajos, Jul 09 2009 *)

Formula

E.g.f.: (2 - x) / (1 - x - x^2). - Ilya Gutkovskiy, Jun 07 2021

Extensions

Extended by Zerinvary Lajos, Jul 09 2009
Edited by R. J. Mathar, Jul 31 2009

A192253 1-sequence of reduction of (n!) by x^2 -> x+1.

Original entry on oeis.org

0, 1, 3, 15, 87, 687, 6447, 71967, 918687, 13256607, 212840607, 3765435807, 72741666207, 1523637512607, 34389853295007, 832071217775007, 21482864837231007, 589515687506543007, 17133249343107695007, 525731414152434287007, 16984313499467403887007
Offset: 1

Views

Author

Clark Kimberling, Jun 27 2011

Keywords

Comments

See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]". After the tenth term, the final digit is 7, for terms in both A192253 and A192252. After the 100th term, the final 6 digits of terms in A192253 are 5,6,7,0,0,7.

Crossrefs

Programs

Formula

Conjecture: a(n) -n*a(n-1) -(n-1)*(n-3)*a(n-2) +(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, May 04 2014
Conjecture: partial sums of A005443. - Sean A. Irvine, Jul 12 2022

A274844 The inverse multinomial transform of A001818(n) = ((2*n-1)!!)^2.

Original entry on oeis.org

1, 8, 100, 1664, 34336, 843776, 24046912, 779780096, 28357004800, 1143189536768, 50612287301632, 2441525866790912, 127479926768287744, 7163315850315825152, 431046122080208896000, 27655699473265974050816, 1884658377677216933085184
Offset: 1

Views

Author

Johannes W. Meijer, Jul 27 2016

Keywords

Comments

The inverse multinomial transform [IML] transforms an input sequence b(n) into the output sequence a(n). The IML transform inverses the effect of the multinomial transform [MNL], see A274760, and is related to the logarithmic transform, see A274805 and the first formula.
To preserve the identity MNL[IML[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the MNL.
In the a(n) formulas, see the examples, the cumulant expansion numbers A127671 appear.
We observe that the inverse multinomial transform leaves the value of a(0) undefined.
The Maple programs can be used to generate the inverse multinomial transform of a sequence. The first program is derived from a formula given by Alois P. Heinz for the logarithmic transform, see the first formula and A001187. The second program uses the e.g.f. for multivariate row polynomials, see A127671 and the examples. The third program uses information about the inverse of the inverse of the multinomial transform, see A274760.
The IML transform of A001818(n) = ((2*n-1)!!)^2 leads quite unexpectedly to A005411(n), a sequence related to certain Feynman diagrams.
Some IML transform pairs, n >= 1: A000110(n) and 1/A000142(n-1); A137341(n) and A205543(n); A001044(n) and A003319(n+1); A005442(n) and A000204(n); A005443(n) and A001350(n); A007559(n) and A000244(n-1); A186685(n+1) and A131040(n-1); A061711(n) and A141151(n); A000246(n) and A000035(n); A001861(n) and A141044(n-1)/A001710(n-1); A002866(n) and A000225(n); A000262(n) and A000027(n).

Examples

			Some a(n) formulas, see A127671:
a(0) = undefined
a(1) = (1/0!) * (1*x(1))
a(2) = (1/1!) * (1*x(2) - x(1)^2)
a(3) = (1/2!) * (1*x(3) - 3*x(2)*x(1) + 2*x(1)^3)
a(4) = (1/3!) * (1*x(4) - 4*x(3)*x(1) - 3*x(2)^2 + 12*x(2)*x(1)^2 - 6*x(1)^4)
a(5) = (1/4!) * (1* x(5) - 5*x(4)*x(1) - 10*x(3)*x(2) + 20*x(3)*x(1)^2 + 30*x(2)^2*x(1) -60*x(2)*x(1)^3 + 24*x(1)^5)
		

References

  • Richard P. Feynman, QED, The strange theory of light and matter, 1985.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.

Crossrefs

Programs

  • Maple
    nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: c:= proc(n) option remember; b(n) - add(k*binomial(n, k)*b(n-k)*c(k), k=1..n-1)/n end: a := proc(n): c(n)/(n-1)! end: seq(a(n), n=1..nmax); # End first IML program.
    nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: t1 := log(1+add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n*coeff(t2, x, n) end: seq(a(n), n=1..nmax); # End second IML program.
    nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: f := series(exp(add(t(n)*x^n/n, n=1..nmax)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(1):=b(1): t(1):= b(1): for n from 2 to nmax+1 do t(n) := solve(d(n)-b(n), t(n)): a(n):=t(n): od: seq(a(n), n=1..nmax); # End third IML program.
  • Mathematica
    nMax = 22; b[n_] := ((2*n-1)!!)^2; c[n_] := c[n] = b[n] - Sum[k*Binomial[n, k]*b[n-k]*c[k], {k, 1, n-1}]/n; a[n_] := c[n]/(n-1)!; Table[a[n], {n, 1, nMax}] (* Jean-François Alcover, Feb 27 2017, translated from Maple *)

Formula

a(n) = c(n)/(n-1)! with c(n) = b(n) - Sum_{k=1..n-1}(k*binomial(n, k)*b(n-k)*c(k)), n >= 1 and a(0) = undefined, with b(n) = A001818(n) = ((2*n-1)!!)^2.
a(n) = A000079(n-1) * A005411(n), n >= 1.

A328055 Expansion of e.g.f. -log(1 - x / (1 - x)^2).

Original entry on oeis.org

0, 1, 5, 32, 270, 2904, 38400, 605520, 11113200, 232888320, 5488560000, 143704108800, 4138573824000, 130020673305600, 4425201196416000, 162194862064435200, 6369479157000960000, 266808274486161408000, 11874724379464826880000, 559591797303082672128000
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 03 2019

Keywords

Comments

a(n) is the number of ways to choose one element from each branch of labeled octupi with n nodes (cf. A029767 and example below). - Enrique Navarrete, Oct 29 2023

Examples

			For n=2, the 3 labeled octupi are the following, and there are 2+2+1 ways to choose one element from each branch:
O-1-2;
O-2-1;
1-O-2. - _Enrique Navarrete_, Oct 29 2023
		

Crossrefs

Cf. A001906, A004146, A005248, A005443, A029767, A052567 (exponential transform), A100404, A226968, A328054.

Programs

  • Magma
    [0] cat [Factorial(n - 1)*(Lucas(2*n)-2):n in [1..20]]; // Marius A. Burtea, Oct 03 2019
    
  • Mathematica
    nmax = 19; CoefficientList[Series[-Log[1 - x/(1 - x)^2], {x, 0, nmax}], x] Range[0, nmax]!
    Join[{0}, Table[(n - 1)! (LucasL[2 n] - 2), {n, 1, 19}]]
  • PARI
    my(x='x+O('x^20)); concat(0, Vec(serlaplace(-log(1 - x / (1 - x)^2)))) \\ Michel Marcus, Oct 03 2019

Formula

E.g.f.: log(1 + Sum_{k>=1} Fibonacci(2*k) * x^k).
a(n) = (n - 1)! * (Lucas(2*n) - 2) for n > 0.

A103740 Numbers k such that k! * F(k) + 1 is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 10, 11, 15, 41, 98, 149, 193, 233, 265, 403, 898, 935, 1291, 2079
Offset: 1

Views

Author

Jason Earls, Mar 28 2005

Keywords

Comments

All values through 2079 have been proved prime with WinPFGW. No more terms up to 6700. Primality testing 2079!*F(2079)+1 [N-1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 2087 Running N-1 test using base 2099 Calling Brillhart-Lehmer-Selfridge with factored part 33.88% 2079!*F(2079)+1 is prime! (15.2535s+0.0043s)
No more terms < 6729. - David Wasserman, Apr 24 2008
No more terms < 12000. - Michael S. Branicky, Jun 30 2024

Examples

			a(6)=7 because 7!*fibonacci(7)+1 = 65521, a prime.
		

Crossrefs

Cf. A005443.

Programs

  • Mathematica
    Select[Range[410],PrimeQ[#!Fibonacci[#]+1]&] (* The program generates the first 17 terms of the sequence. *) (* Harvey P. Dale, Jan 30 2024 *)
Showing 1-10 of 11 results. Next