A328055
Expansion of e.g.f. -log(1 - x / (1 - x)^2).
Original entry on oeis.org
0, 1, 5, 32, 270, 2904, 38400, 605520, 11113200, 232888320, 5488560000, 143704108800, 4138573824000, 130020673305600, 4425201196416000, 162194862064435200, 6369479157000960000, 266808274486161408000, 11874724379464826880000, 559591797303082672128000
Offset: 0
For n=2, the 3 labeled octopuses are the following, and there are 2+2+1 ways to choose one element from each branch:
O-1-2;
O-2-1;
1-O-2. - _Enrique Navarrete_, Oct 29 2023
-
[0] cat [Factorial(n - 1)*(Lucas(2*n)-2):n in [1..20]]; // Marius A. Burtea, Oct 03 2019
-
nmax = 19; CoefficientList[Series[-Log[1 - x/(1 - x)^2], {x, 0, nmax}], x] Range[0, nmax]!
Join[{0}, Table[(n - 1)! (LucasL[2 n] - 2), {n, 1, 19}]]
-
my(x='x+O('x^20)); concat(0, Vec(serlaplace(-log(1 - x / (1 - x)^2)))) \\ Michel Marcus, Oct 03 2019
A366942
Expansion of e.g.f. 1/(1-x-2*x^2-3*x^3).
Original entry on oeis.org
1, 1, 6, 48, 408, 5040, 72000, 1184400, 22619520, 482993280, 11459750400, 299495750400, 8531976499200, 263353163673600, 8754879893760000, 311808414677760000, 11845876873678848000, 478163414336864256000, 20436460099541950464000, 921972301728418676736000
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n, j)*j!*j, j=1..min(3, n)))
end:
seq(a(n), n=0..19); # Alois P. Heinz, Dec 14 2023
-
With[{m = 20}, Range[0, m]! * CoefficientList[Series[1/(1 - x - 2*x^2 - 3*x^3), {x, 0, m}], x]] (* Amiram Eldar, Oct 30 2023 *)
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1-x-2*x^2-3*x^3))) \\ Michel Marcus, Oct 30 2023
A346432
a(0) = 1; a(n) = n! * Sum_{k=0..n-1} (n-k+1) * a(k) / k!.
Original entry on oeis.org
1, 2, 14, 144, 1968, 33600, 688320, 16450560, 449326080, 13806858240, 471395635200, 17703899136000, 725338710835200, 32193996432998400, 1538840509503897600, 78808952068374528000, 4305129487814098944000, 249876735246162984960000, 15356385691181506363392000
Offset: 0
Cf.
A000670,
A001339,
A002866,
A003480,
A007840,
A052555,
A052567,
A136658,
A216794,
A308939,
A346433.
-
a[0] = 1; a[n_] := a[n] = n! Sum[(n - k + 1) a[k]/k!, {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]
nmax = 18; CoefficientList[Series[1/(2 - 1/(1 - x)^2), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-1)^(n - k) StirlingS1[n, k] 2^k HurwitzLerchPhi[1/2, -k, 0]/2, {k, 0, n}], {n, 0, 18}]
-
my(x='x+O('x^25)); Vec(serlaplace(1 / (2 - 1 / (1 - x)^2))) \\ Michel Marcus, Jul 18 2021
Showing 1-3 of 3 results.
Comments