cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A005444 From a Fibonacci-like differential equation.

Original entry on oeis.org

1, 1, 3, 8, 50, 214, 2086, 11976, 162816, 1143576, 20472504, 165910128, 3785092032, 33908109936, 967508478192, 9252123203712, 327062428940160, 3236057604910080, 141403289873955840, 1404243298160352000, 76168955916831029760, 735206146073008508160
Offset: 0

Views

Author

Keywords

Comments

Sequence is signed: first negative term is a(35) = -230450728485788167742674544892530875760640. - Vladeta Jovovic, Sep 29 2003

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [(&+[Factorial(j)*Fibonacci(j+1)*StirlingFirst(n,j): j in [0..n]]): n in [0..30]]; // G. C. Greubel, Nov 21 2022
    
  • Mathematica
    CoefficientList[Series[1/(1-Log[1+x]-(Log[1+x])^2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 01 2013 *)
  • PARI
    a(n) = sum(k=0, n, k!*fibonacci(k+1)*stirling(n, k, 1)); \\ Michel Marcus, Oct 30 2015
    
  • SageMath
    def A005444(n): return sum((-1)^(n+k)*factorial(k)*fibonacci(k+1)* stirling_number1(n,k) for k in (0..n))
    [A005444(n) for n in range(31)] # G. C. Greubel, Nov 21 2022

Formula

a(n) = Sum_{k=0..n} k!*Fibonacci(k+1)*Stirling1(n, k).
E.g.f.: 1/(1 - log(1+x) - log(1+x)^2). - Vladeta Jovovic, Sep 29 2003
a(n) ~ n! * (-1)^n * exp(n*(1+sqrt(5))/2) / (sqrt(5)*(exp((1+sqrt(5))/2)-1)^(n+1)). - Vaclav Kotesovec, Oct 01 2013

A320352 Expansion of e.g.f. (exp(x) - 1)/(exp(x) - exp(2*x) + 1).

Original entry on oeis.org

0, 1, 3, 19, 159, 1651, 20583, 299419, 4977759, 93097891, 1934655063, 44224195819, 1102820674959, 29792843865331, 866769668577543, 27018340680076219, 898343366411181759, 31736205208791131971, 1187110673532381604023, 46871464129796857140619, 1948059531745350527058159
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 11 2018

Keywords

Comments

From Peter Bala, Aug 19 2025: (Start)
Conjecture: Let k be a positive integer. The sequence obtained by reducing a(n) modulo k is eventually periodic with the period dividing phi(k) = A000010(k). For example, modulo 9 we obtain the sequence [0, 1, 3, 1, 6, 4, 0, 7, 3, 1, 6, 4, 0, 7, 3, 1, 6, 4, 0, 7, ...] with an apparent period of 6 = phi(9) beginning at n = 2. Cf. A004123.(End)

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series((exp(x) - 1)/(exp(x) - exp(2*x) + 1), x=0, 22), x, n), n=0..21); # Paolo P. Lava, Jan 09 2019
  • Mathematica
    nmax = 20; CoefficientList[Series[(Exp[x] - 1)/(Exp[x] - Exp[2 x] + 1), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[StirlingS2[n, k] Fibonacci[k] k!, {k, 0, n}], {n, 0, 20}]

Formula

E.g.f.: (1 + sinh(x) - cosh(x))/(1 - 2*sinh(x)).
a(n) = Sum_{k=0..n} Stirling2(n,k)*Fibonacci(k)*k!.
a(n) ~ n! / (sqrt(5) * phi^2 * (log(phi))^(n+1)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 12 2018

A354018 Expansion of e.g.f. -log(1-x)/(1 + log(1-x) - log(1-x)^2).

Original entry on oeis.org

0, 1, 3, 20, 172, 1864, 24248, 368136, 6388128, 124711944, 2705241672, 64550432352, 1680280323984, 47383464508080, 1438986494794704, 46821994627363968, 1625069178022566528, 59927028756823323648, 2339899614887520358656, 96439023491479275172608
Offset: 0

Views

Author

Seiichi Manyama, May 14 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[k! * Fibonacci[k] * Abs[StirlingS1[n,k]], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, May 15 2022 *)
    With[{nn=20},CoefficientList[Series[-Log[1-x]/(1+Log[1-x]-Log[1-x]^2),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Nov 22 2024 *)
  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-log(1-x)/(1+log(1-x)-log(1-x)^2))))
    
  • PARI
    a(n) = sum(k=0, n, k!*fibonacci(k)*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=0..n} k! * Fibonacci(k) * |Stirling1(n,k)|.
a(n) ~ n! * (sqrt(5) - 1) / (2 * sqrt(5) * exp((sqrt(5) - 1)/2) * (1 - exp((1 - sqrt(5))/2))^(n+1)). - Vaclav Kotesovec, May 15 2022

A358032 Expansion of e.g.f. (1 + log(1+x))/(1 - log(1+x) * (1 + log(1+x))).

Original entry on oeis.org

1, 2, 4, 16, 66, 438, 2694, 25296, 204576, 2509728, 24912816, 381010320, 4440815472, 82150191264, 1089159690912, 23879423005440, 351430312958208, 9005004020293632, 144184020764472576, 4277182103330660352, 73227226213747521792, 2499666592623881921280
Offset: 0

Views

Author

Seiichi Manyama, Oct 25 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace((1+log(1+x))/(1-log(1+x)*(1+log(1+x)))))
    
  • PARI
    a(n) = sum(k=0, n, k!*fibonacci(k+2)*stirling(n, k, 1));

Formula

a(n) = Sum_{k=0..n} k! * Fibonacci(k+2) * Stirling1(n,k).
a(n) = A005444(n) + A005445(n).

A366133 Triangle read by rows: coefficients in expansion of another Asveld's polynomials Pi_j(x).

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 8, 9, 3, 1, 50, 32, 18, 4, 1, 214, 250, 80, 30, 5, 1, 2086, 1284, 750, 160, 45, 6, 1, 11976, 14602, 4494, 1750, 280, 63, 7, 1, 162816, 95808, 58408, 11984, 3500, 448, 84, 8, 1, 1143576, 1465344, 431136, 175224, 26964, 6300, 672, 108, 9, 1, 20472504, 11435760, 7326720, 1437120, 438060, 53928, 10500, 960, 135, 10, 1
Offset: 0

Views

Author

Mélika Tebni, Sep 30 2023

Keywords

Comments

First negative term is T(35,0) = -230450728485788167742674544892530875760640.
Conjectures: For 0 < k < p and p prime, T(p,k) == 0 (mod p).
For 0 < k < n (k odd) and n = 2^m (m natural number), T(n,k) == 0 (mod n).

Examples

			Triangle begins:
      1,
      1,     1,
      3,     2,    1,
      8,     9,    3,    1,
     50,    32,   18,    4,   1,
    214,   250,   80,   30,   5,  1,
   2086,  1284,  750,  160,  45,  6,  1,
  11976, 14602, 4494, 1750, 280, 63,  7,  1,
  ...
		

Crossrefs

Cf. A000045, A005444 (col 0), A005445, A039948, A048994, A305923 (row sums).

Programs

  • Maple
    T := (n, k) -> binomial(n,k)*add(j!*combinat[fibonacci](j+1)*Stirling1(n-k,j), j=0 .. n-k): seq(print(seq(T(n, k), k = 0 .. n)), n=0 .. 9);
    # second Maple program:
    T := (n, k) -> add(Stirling2(j, k)/j!*add(i!*combinat[fibonacci](i-j+1)*Stirling1(n, i), i = j .. n), j = k .. n): seq(print(seq(T(n, k), k = 0 .. n)), n = 0 .. 9);

Formula

T(n,k) = binomial(n,k)*A005444(n-k).
Sum_{k=1..n} (-1)^(k-1)*(k-1)!*T(n, k) = A005445(n).
E.g.f. of column k: x^k / ((1-log(1+x)-log(1+x)^2)*k!), k >= 0.
Recurrence: T(n,0) = A005444(n) and T(n,k) = n*T(n-1,k-1) / k, n >= k >= 1.
T(n,k) = Sum_{j=k..n} Stirling2(j,k)*(Sum_{i=j..n} Stirling1(n,i)*A039948(i,j)).
Showing 1-5 of 5 results.