A005442
a(n) = n!*Fibonacci(n+1).
Original entry on oeis.org
1, 1, 4, 18, 120, 960, 9360, 105840, 1370880, 19958400, 322963200, 5748019200, 111607372800, 2347586841600, 53178757632000, 1290674601216000, 33413695451136000, 919096314200064000, 26768324463648768000
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..416
- P. R. J. Asveld & N. J. A. Sloane, Correspondence, 1987
- P. R. J. Asveld, A family of Fibonacci-like sequences, Fib. Quart., 25 (1987), 81-83.
- P. R. J. Asveld, Another family of Fibonacci-like sequences, Fib. Quart., 25 (1987), 361-364.
- P. R. J. Asveld, Fibonacci-like differential equations with a polynomial nonhomogeneous term, Fib. Quart. 27 (1989), 303-309.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 494
- Robert A. Proctor, Let's Expand Rota's Twelvefold Way For Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- Index entries for related partition-counting sequences
Row sums of Fibonacci Jabotinsky-triangle
A039692.
A080599
Expansion of e.g.f.: 2/(2-2*x-x^2).
Original entry on oeis.org
1, 1, 3, 12, 66, 450, 3690, 35280, 385560, 4740120, 64751400, 972972000, 15949256400, 283232149200, 5416632421200, 110988861984000, 2425817682288000, 56333385828720000, 1385151050307024000, 35950878932544576000, 982196278209226080000, 28175806418228108640000
Offset: 0
Detlef Pauly (dettodet(AT)yahoo.de), Feb 24 2003
From _Gus Wiseman_, Jul 04 2020: (Start)
The a(0) = 1 through a(3) = 12 ordered set partitions with block sizes <= 2 are:
{} {{1}} {{1,2}} {{1},{2,3}}
{{1},{2}} {{1,2},{3}}
{{2},{1}} {{1,3},{2}}
{{2},{1,3}}
{{2,3},{1}}
{{3},{1,2}}
{{1},{2},{3}}
{{1},{3},{2}}
{{2},{1},{3}}
{{2},{3},{1}}
{{3},{1},{2}}
{{3},{2},{1}}
(End)
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- S. Alex Bradt, Jennifer Elder, Pamela E. Harris, Gordon Rojas Kirby, Eva Reutercrona, Yuxuan (Susan) Wang, and Juliet Whidden, Unit interval parking functions and the r-Fubini numbers, arXiv:2401.06937 [math.CO], 2024. See page 10.
- Jennifer Elder, Pamela E. Harris, Jan Kretschmann, and J. Carlos MartÃnez Mori, Boolean intervals in the weak order of S_n, arXiv:2306.14734 [math.CO], 2023.
- Laura Gellert and Raman Sanyal, On degree sequences of undirected, directed, and bidirected graphs, arXiv preprint arXiv:1512.08448 [math.CO], 2015.
- Hannah Golab, Pattern avoidance in Cayley permutations, Master's Thesis, Northern Arizona Univ. (2024). See p. 36.
- Harri Hakula, Helmut Harbrecht, Vesa Kaarnioja, Frances Y. Kuo, and Ian H. Sloan, Uncertainty quantification for random domains using periodic random variables, arXiv:2210.17329 [math.NA], 2022.
- Dixy Msapato, Counting the number of tau-exceptional sequences over Nakayama algebras, arXiv:2002.12194 [math.RT], 2020.
- Robert A. Proctor, Let's Expand Rota's Twelvefold Way For Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- Gus Wiseman, Sequences counting and ranking compositions by the patterns they match or avoid.
- Index entries for related partition-counting sequences
(1,1)-avoiding patterns are
A000142.
(1,1,1)-avoiding compositions are
A232432.
(1,1,1)-matching patterns are
A335508.
(1,1,1)-avoiding permutations of prime indices are
A335511.
(1,1,1)-avoiding compositions are ranked by
A335513.
(1,1,1,1)-avoiding patterns are
A189886.
-
[n le 2 select 1 else (n-1)*Self(n-1) + Binomial(n-1,2)*Self(n-2): n in [1..31]]; // G. C. Greubel, Jan 31 2023
-
a:= n-> n! *(Matrix([[1,1], [1/2,0]])^n)[1,1]:
seq(a(n), n=0..40); # Alois P. Heinz, Jun 01 2009
a:= gfun:-rectoproc({a(n) = n*a(n-1)+(n*(n-1)/2)*a(n-2),a(0)=1,a(1)=1},a(n),remember):
seq(a(n), n=0..40); # Robert Israel, Nov 01 2015
-
Table[n!*SeriesCoefficient[-2/(-2+2*x+x^2),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 13 2012 *)
Round@Table[n! ((1+Sqrt[3])^(n+1) - (1-Sqrt[3])^(n+1))/(2^(n+1) Sqrt[3]), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 31 2015 *)
-
Vec(serlaplace((2/(2-2*x-x^2) + O(x^30)))) \\ Michel Marcus, Nov 02 2015
-
A002605=BinaryRecurrenceSequence(2,2,0,1)
def A080599(n): return factorial(n)*A002605(n+1)/2^n
[A080599(n) for n in range(41)] # G. C. Greubel, Jan 31 2023
A052563
E.g.f.: (1-x)/(1-3*x).
Original entry on oeis.org
1, 2, 12, 108, 1296, 19440, 349920, 7348320, 176359680, 4761711360, 142851340800, 4714094246400, 169707392870400, 6618588321945600, 277980709521715200, 12509131928477184000, 600438332566904832000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!((1-x)/(1-3*x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 23 2018
-
spec := [S,{S=Sequence(Prod(Union(Z,Z),Sequence(Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
With[{nn=20},CoefficientList[Series[(1-x)/(1-3x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, May 21 2014 *)
-
x='x+O('x^30); Vec(serlaplace((1-x)/(1-3*x))) \\ G. C. Greubel, May 23 2018
A366942
Expansion of e.g.f. 1/(1-x-2*x^2-3*x^3).
Original entry on oeis.org
1, 1, 6, 48, 408, 5040, 72000, 1184400, 22619520, 482993280, 11459750400, 299495750400, 8531976499200, 263353163673600, 8754879893760000, 311808414677760000, 11845876873678848000, 478163414336864256000, 20436460099541950464000, 921972301728418676736000
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n, j)*j!*j, j=1..min(3, n)))
end:
seq(a(n), n=0..19); # Alois P. Heinz, Dec 14 2023
-
With[{m = 20}, Range[0, m]! * CoefficientList[Series[1/(1 - x - 2*x^2 - 3*x^3), {x, 0, m}], x]] (* Amiram Eldar, Oct 30 2023 *)
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1-x-2*x^2-3*x^3))) \\ Michel Marcus, Oct 30 2023
A331403
E.g.f.: 1 / ((1 + x) * sqrt(1 - 2*x)).
Original entry on oeis.org
1, 0, 3, 6, 81, 540, 7155, 85050, 1346625, 22339800, 431331075, 9004668750, 208178118225, 5199538043700, 140664514065075, 4080315642653250, 126613733680058625, 4180226398201854000, 146399020309066399875, 5419213146765629961750, 211446723837565171580625
Offset: 0
-
nmax = 20; CoefficientList[Series[1/((1 + x) Sqrt[1 - 2 x]), {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-1)^(n - k) (2 k - 1)!!/k!, {k, 0, n}], {n, 0, 20}]
-
a(n) = {n! * sum(k=0, n, (-1)^(n - k) * (2*k)! / (2^k*k!^2))} \\ Andrew Howroyd, Jan 16 2020
-
seq(n) = {Vec(serlaplace(1 / ((1 + x) * sqrt(1 - 2*x + O(x*x^n)))))} \\ Andrew Howroyd, Jan 16 2020
Showing 1-5 of 5 results.
Comments