A039752 Ruth-Aaron numbers (2): sum of prime divisors of n = sum of prime divisors of n+1 (both taken with multiplicity).
5, 8, 15, 77, 125, 714, 948, 1330, 1520, 1862, 2491, 3248, 4185, 4191, 5405, 5560, 5959, 6867, 8280, 8463, 10647, 12351, 14587, 16932, 17080, 18490, 20450, 24895, 26642, 26649, 28448, 28809, 33019, 37828, 37881, 41261, 42624, 43215, 44831, 44891, 47544, 49240
Offset: 1
Keywords
Examples
7129199 (7*11^2*19*443, with 7129200 = 2^4*3*5^2*13*457) is in this sequence because 7+11+11+19+443 = 2+2+2+2+3+5+5+13+457.
References
- John L. Drost, Ruth/Aaron Pairs, J. Recreational Math. 28 (No. 2), 120-122.
- S. G. Krantz, Mathematical Apocrypha, MAA, 2002, see p. 26.
- Dana Mackenzie, Homage to an itinerant master, Science 275, p. 759, 1997.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..215 from P. Weisenhorn, terms 216..1121 from Michael De Vlieger)
- Shyam Sunder Gupta, Smith Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 4, 127-157.
- Brady Haran and Carl Pomerance, Aaron Numbers, Numberphile video (2017)
- Hans Havermann, Ruth-Aaron pairs, indexed and factored
- Hans Havermann, A Large Ruth-Aaron Pair
- Carol Nelson, David E. Penney and Carl Pomerance, 714 and 715, J. Recreational Math. 7 (No. 2) 1974, 87-89.
- Ivars Peterson, Playing with Ruth-Aaron pairs
- Carl Pomerance, Ruth-Aaron Numbers Revisited, Paul Erdős and his Mathematics, (Budapest, 1999), Bolyai Soc. Math. Stud. 11, János Bolyai Math. Soc., Budapest, 2002, pp. 567-579.
- Carlos Rivera, Ruth-Aaron Pairs Revisited
- Terrel Trotter, Jr., Ruth-Aaron Numbers.
- Terrel Trotter, Jr., 714 and 715.
- Eric Weisstein, Ruth-Aaron Pair (in Wolfram MathWorld)
Programs
-
Maple
anzahl:=0: n:=4: nr:=0: g:=nops(ifactors(n)[2]): s[nr]:=sum(ifactors(n)[2,u][1]*ifactors(n)[2,u][2],u=1..g): for j from n+1 to 1000000 do nr:=(nr+1) mod 2: g:=nops(ifactors(j)[2]): s[nr]:=sum(ifactors(j)[2,u][1]*ifactors(j)[2,u][2],u=1..g): if (s[0]=s[1]) then anzahl):=anzahl+1: print(anzahl,j-1,j,s[0]): end if: end do: # Paul Weisenhorn, Jul 02 2009
-
Mathematica
ppf[n_] := Plus @@ ((#[[1]] #[[2]]) & /@ FactorInteger[n]); Select[Range[50000], ppf[#] == ppf[#+1] &] (* Harvey P. Dale, Apr 27 2009 *)
-
PARI
is_A039752(n)=A001414(n)==A001414(n+1) \\ M. F. Hasler, Mar 01 2014
-
Python
from sympy import factorint def aupton(terms): alst, k, sopfrk, sopfrkp1 = [], 2, 2, 3 while len(alst) < terms: if sopfrkp1 == sopfrk: alst.append(k) k += 1 fkp1 = factorint(k+1) sopfrk, sopfrkp1 = sopfrkp1, sum(p*fkp1[p] for p in fkp1) return alst print(aupton(42)) # Michael S. Branicky, May 08 2021
Comments