A039761 Triangle of D-analogs of Stirling numbers of the 2nd kind.
1, 1, 0, 1, 2, 1, 1, 6, 7, 1, 1, 12, 34, 24, 1, 1, 20, 110, 190, 81, 1, 1, 30, 275, 920, 1051, 268, 1, 1, 42, 581, 3255, 7371, 5747, 869, 1, 1, 56, 1092, 9296, 35686, 57568, 31060, 2768, 1, 1, 72, 1884, 22764, 134022, 373926, 441652, 166068, 8689, 1, 1, 90, 3045, 49680, 418362, 1812552, 3803290, 3342240, 879541, 26964, 1
Offset: 0
Examples
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins: 1; 1, 0; 1, 2, 1; 1, 6, 7, 1; 1, 12, 34, 24, 1; 1, 20, 110, 190, 81, 1; 1, 30, 275, 920, 1051, 268, 1; ...
Links
- Ruedi Suter, Two analogues of a classical sequence, J. Integer Sequences, Vol. 3 (2000), #P00.1.8.
Crossrefs
Cf. A039760 (transposed triangle).
Formula
Bivariate e.g.f.-o.g.f.: (exp(x*y) - x*y) * exp(1/(2*y)*(exp(2*x*y) - 1)). [Apply (x, y) -> (x*y, 1/y) to (exp(x) - x)*exp(y/2*(exp(2*x) - 1)). - Petros Hadjicostas, Jul 11 2020]
T(n,k) = (Sum_{j=n-k..n} 2^(j+k-n)*binomial(n,j)*Stirling2(j, n-k)) - 2^(k-1)*n*Stirling2(n-1, n-k). [Use Proposition 3 in Suter (2000) with k -> n-k.] - Petros Hadjicostas, Jul 11 2020
Extensions
More terms from Petros Hadjicostas, Jul 12 2020
Comments