A039812 Triangle read by rows: matrix 4th power of the Stirling2 triangle A008277.
1, 4, 1, 22, 12, 1, 154, 136, 24, 1, 1304, 1650, 460, 40, 1, 12915, 21904, 8550, 1160, 60, 1, 146115, 318521, 162904, 30590, 2450, 84, 1, 1855570, 5051988, 3246068, 789824, 86940, 4592, 112, 1, 26097835, 86910426, 68151304, 20606796, 2919504, 210924, 7896, 144, 1
Offset: 1
Examples
Triangle begins 1; 4, 1; 22, 12, 1; 154, 136, 24, 1; 1304, 1650, 460, 40, 1; 12915, 21904, 8550, 1160, 60, 1; ...
Links
- Seiichi Manyama, Rows n = 1..140, flattened
Programs
-
Mathematica
Flatten[Table[SeriesCoefficient[(Exp[Exp[Exp[Exp[x]-1]-1]-1]-1)^k, {x,0,n}] n!/k!, {n,9}, {k,n}]] (* Stefano Spezia, Sep 12 2022 *)
Formula
E.g.f. k-th column: (( exp(exp(exp(exp(x)-1)-1)-1)-1 )^k)/k!. [corrected by Seiichi Manyama, Feb 12 2022]