A039900 Number of partitions satisfying 0 < cn(0,5) + cn(1,5) + cn(4,5).
0, 1, 1, 2, 4, 6, 9, 13, 19, 27, 38, 52, 71, 95, 127, 167, 220, 285, 370, 474, 607, 770, 976, 1226, 1540, 1920, 2391, 2960, 3660, 4501, 5529, 6760, 8254, 10038, 12190, 14750, 17825, 21470, 25825, 30975, 37101, 44322, 52879, 62937, 74811, 88733, 105110, 124261
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Mar 09 2019: (Start) The a(1) = 1 through a(7) = 13 integer partitions with at least one part equal to 0, 1, or 4 modulo 5: (1) (11) (21) (4) (5) (6) (43) (111) (31) (41) (42) (52) (211) (221) (51) (61) (1111) (311) (321) (331) (2111) (411) (421) (11111) (2211) (511) (3111) (2221) (21111) (3211) (111111) (4111) (22111) (31111) (211111) (1111111) (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<1, 0, b(n, i-1, t)+ `if`(i>n, 0, b(n-i, i, `if`(irem(i, 5) in {2, 3}, t, 1))))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..50); # Alois P. Heinz, Apr 03 2014
-
Mathematica
Table[Count[IntegerPartitions[n], p_ /; Min[p] <= Length[p]], {n, 40}] (* Clark Kimberling, Feb 13 2014 *) b[n_, i_, t_] := b[n, i, t] = If[n==0, t, If[i<1, 0, b[n, i-1, t] + If[i > n, 0, b[n-i, i, If[MemberQ[{2, 3}, Mod[i, 5]], t, 1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 16 2015, after Alois P. Heinz *)
-
PARI
my(N=66, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, x^k*(1-x^k^2)/prod(j=1, k, 1-x^j)))) \\ Seiichi Manyama, Jan 13 2022
Formula
G.f.: Sum_{k>=0} x^k * (1-x^(k^2)) / Product_{j=1..k} (1-x^j). - Seiichi Manyama, Jan 13 2022
Comments