cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A108624 G.f. satisfies x = A(x)*(1+A(x))/(1-A(x)-(A(x))^2).

Original entry on oeis.org

1, 0, -1, 1, 1, -4, 3, 8, -23, 10, 67, -153, 9, 586, -1081, -439, 5249, -7734, -7941, 47501, -53791, -105314, 430119, -343044, -1249799, 3866556, -1730017, -13996097, 34243897, -1947204, -150962373, 296101864, 121857185
Offset: 1

Views

Author

Christian G. Bower, Jun 12 2005

Keywords

Comments

Row sums of triangle A202327. - Peter Luschny, Apr 26 2017

Crossrefs

Except for signs, same as A108623.

Programs

  • Julia
    function A108624_list(len::Int)
        len <= 0 && return BigInt[]
        T = zeros(BigInt, len, len); T[1,1] = 1
        S = Array(BigInt, len); S[1] = 1
        for n in 2:len
            T[n,n] = 1
            for k in 1:n-1
                T[n,k] = (k > 1 ? T[n-1,k-1] : 0) - T[n-1,k] - T[n-1,k+1]
            end
            S[n] = sum(T[n,k] for k in 1:n)
        end
    S end
    println(A108624_list(33)) # Peter Luschny, Apr 27 2017
    
  • Magma
    R:=PowerSeriesRing(Rationals(), 41);
    Coefficients(R!( (-1+x+Sqrt(1+2*x+5*x^2))/(2*(1+x)) )); // G. C. Greubel, Oct 20 2023
    
  • Mathematica
    a[n_]:= Sum[k Sum[(-1)^(j-k) Binomial[j, 2j-n-k] Binomial[n, j], {j, 0, n}], {k, 1, n}]/n;
    Array[a, 33] (* Jean-François Alcover, Jun 13 2019, after Vladimir Kruchinin *)
    Rest@CoefficientList[Series[(-1+x+Sqrt[1+2*x+5*x^2])/(2*(1+x)), {x,0, 41}], x] (* G. C. Greubel, Oct 20 2023 *)
  • SageMath
    def A108624_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (-1+x+sqrt(1+2*x+5*x^2))/(2*(1+x))).list()
    a=A108624_list(41); a[1:] # G. C. Greubel, Oct 20 2023

Formula

a(n) = (1/n)*Sum_{k=1..n} ( k * Sum_{j=0..n} (-1)^(k+j)*binomial(j, 2*j-n-k)*binomial(n,j) ). - Vladimir Kruchinin, May 19 2012
G.f.: (-1 + x + sqrt(1+2*x+5*x^2))/(2*(1+x)). - G. C. Greubel, Oct 20 2023
Showing 1-1 of 1 results.