A040028 Primes p such that x^3 = 2 has a solution mod p.
2, 3, 5, 11, 17, 23, 29, 31, 41, 43, 47, 53, 59, 71, 83, 89, 101, 107, 109, 113, 127, 131, 137, 149, 157, 167, 173, 179, 191, 197, 223, 227, 229, 233, 239, 251, 257, 263, 269, 277, 281, 283, 293, 307, 311, 317, 347, 353, 359, 383, 389, 397, 401, 419, 431, 433
Offset: 1
References
- David A. Cox, "Primes of the Form x^2+ny^2", 1998, John Wiley & Sons.
- Kenneth Ireland and Michael Rosen, "A Classical Introduction to Modern Number Theory", second ed., 1990, Springer-Verlag.
Links
Crossrefs
Programs
-
Magma
[ p: p in PrimesUpTo(433) | exists(t){x : x in ResidueClassRing(p) | x^3 eq 2} ]; // Klaus Brockhaus, Dec 02 2008
-
Mathematica
f[p_] := Block[{k = 2}, While[k < p && Mod[k^3, p] != 2, k++ ]; If[k == p, 0, 1]]; Select[ Prime[ Range[100]], f[ # ] == 1 &] (* Robert G. Wilson v, Jul 26 2004 *)
-
PARI
select(p->ispower(Mod(2,p),3),primes(100)) \\ Charles R Greathouse IV, Apr 28 2015
Formula
a(n) ~ (3/2) n log n. - Charles R Greathouse IV, Apr 06 2022
Extensions
Typo corrected to A014752 by Paul Landon (paullandon(AT)hotmail.com), Jan 25 2010
Comments