A040036 Primes p such that x^3 = 3 has a solution mod p.
2, 3, 5, 11, 17, 23, 29, 41, 47, 53, 59, 61, 67, 71, 73, 83, 89, 101, 103, 107, 113, 131, 137, 149, 151, 167, 173, 179, 191, 193, 197, 227, 233, 239, 251, 257, 263, 269, 271, 281, 293, 307, 311, 317, 347, 353, 359, 367, 383, 389, 401, 419, 431, 439, 443, 449, 461, 467, 479, 491, 499
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Kenneth S. Williams, 3 as a Ninth Power (mod p), Math. Scand. Vol 35 (1974), 309-317.
Programs
-
Magma
[p: p in PrimesUpTo(450) | exists(t){x : x in ResidueClassRing(p) | x^3 eq 3}]; // Vincenzo Librandi, Sep 11 2012
-
Maple
select(p -> isprime(p) and numtheory:-mroot(3,3,p) <> FAIL, [2,seq(i,i=3..1000,2)]); # Robert Israel, Nov 12 2017
-
Mathematica
ok [p_]:=Reduce[Mod[x^3 - 3, p] == 0, x, Integers] =!= False; Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 11 2012 *)
-
PARI
isok(p) = isprime(p) && ispower(Mod(3,p), 3); \\ Michel Marcus, Nov 12 2017
Comments