cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A040036 Primes p such that x^3 = 3 has a solution mod p.

Original entry on oeis.org

2, 3, 5, 11, 17, 23, 29, 41, 47, 53, 59, 61, 67, 71, 73, 83, 89, 101, 103, 107, 113, 131, 137, 149, 151, 167, 173, 179, 191, 193, 197, 227, 233, 239, 251, 257, 263, 269, 271, 281, 293, 307, 311, 317, 347, 353, 359, 367, 383, 389, 401, 419, 431, 439, 443, 449, 461, 467, 479, 491, 499
Offset: 1

Views

Author

Keywords

Comments

Complement of A040038 relative to A000040. - Vincenzo Librandi, Sep 13 2012
Being a cube mod p is a necessary condition for 3 to be a 9th power mod p. See Williams link pp. 1, 8 (warning: term 271 is missed). - Michel Marcus, Nov 12 2017

Crossrefs

Cf. A000040, A040038. Contains A003627.

Programs

  • Magma
    [p: p in PrimesUpTo(450) | exists(t){x : x in ResidueClassRing(p) | x^3 eq 3}]; // Vincenzo Librandi, Sep 11 2012
    
  • Maple
    select(p -> isprime(p) and numtheory:-mroot(3,3,p) <> FAIL, [2,seq(i,i=3..1000,2)]); # Robert Israel, Nov 12 2017
  • Mathematica
    ok [p_]:=Reduce[Mod[x^3 - 3, p] == 0, x, Integers] =!= False; Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 11 2012 *)
  • PARI
    isok(p) = isprime(p) && ispower(Mod(3,p), 3); \\ Michel Marcus, Nov 12 2017