A040038 Primes p such that x^3 = 3 has no solution mod p.
7, 13, 19, 31, 37, 43, 79, 97, 109, 127, 139, 157, 163, 181, 199, 211, 223, 229, 241, 277, 283, 313, 331, 337, 349, 373, 379, 397, 409, 421, 433, 457, 463, 487, 541, 571, 601, 607, 631, 673, 691, 709, 733, 739
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(1000) | not exists{x : x in ResidueClassRing(p) | x^3 eq 3} ]; // Vincenzo Librandi, Sep 17 2012
-
Mathematica
ok[p_]:= Reduce[Mod[x^3 - 3, p] == 0, x, Integers] == False;Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 17 2012 *)
-
PARI
forprime(p=2,10^3,if(#polrootsmod(x^3-3,p)==0,print1(p,", "))) \\ Joerg Arndt, Jul 16 2015
Comments