cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A040038 Primes p such that x^3 = 3 has no solution mod p.

Original entry on oeis.org

7, 13, 19, 31, 37, 43, 79, 97, 109, 127, 139, 157, 163, 181, 199, 211, 223, 229, 241, 277, 283, 313, 331, 337, 349, 373, 379, 397, 409, 421, 433, 457, 463, 487, 541, 571, 601, 607, 631, 673, 691, 709, 733, 739
Offset: 1

Views

Author

Keywords

Comments

Primes of the form 7x^2+3xy+9y^2, whose discriminant is -243. - T. D. Noe, May 17 2005
Complement of A040036 relative to A000040. - Vincenzo Librandi, Sep 17 2012

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | not exists{x : x in ResidueClassRing(p) | x^3 eq 3} ]; // Vincenzo Librandi, Sep 17 2012
    
  • Mathematica
    ok[p_]:= Reduce[Mod[x^3 - 3, p] == 0, x, Integers] == False;Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 17 2012  *)
  • PARI
    forprime(p=2,10^3,if(#polrootsmod(x^3-3,p)==0,print1(p,", "))) \\ Joerg Arndt, Jul 16 2015