A040081 Riesel problem: a(n) = smallest m >= 0 such that n*2^m-1 is prime, or -1 if no such prime exists.
2, 1, 0, 0, 2, 0, 1, 0, 1, 1, 2, 0, 3, 0, 1, 1, 2, 0, 1, 0, 1, 1, 4, 0, 3, 2, 1, 3, 4, 0, 1, 0, 2, 1, 2, 1, 1, 0, 3, 1, 2, 0, 7, 0, 1, 3, 4, 0, 1, 2, 1, 1, 2, 0, 1, 2, 1, 3, 12, 0, 3, 0, 2, 1, 4, 1, 5, 0, 1, 1, 2, 0, 7, 0, 1, 1, 2, 2, 1, 0, 3, 1, 2, 0, 5, 6, 1, 23, 4, 0, 1, 2, 3, 3, 2, 1, 1, 0, 1, 1, 10, 0, 3
Offset: 1
Keywords
Links
- Eric Chen, Table of n, a(n) for n = 1..2292 (first 1000 terms from T. D. Noe)
- Matteo Cati and Dmitrii V. Pasechnik, A database of constructions of Hadamard matrices, arXiv:2411.18897 [math.CO], 2024. See p. 14.
- Hans Riesel, Some large prime numbers. Translated from the Swedish original (NĂ¥gra stora primtal, Elementa 39 (1956), pp. 258-260) by Lars Blomberg.
Crossrefs
Programs
-
Haskell
a040081 = length . takeWhile ((== 0) . a010051) . iterate ((+ 1) . (* 2)) . (subtract 1) -- Reinhard Zumkeller, Mar 05 2012
-
Mathematica
Table[m = 0; While[! PrimeQ[n*2^m - 1], m++]; m, {n, 100}] (* Arkadiusz Wesolowski, Sep 04 2011 *)
-
PARI
a(n)=for(k=0,2^16,if(ispseudoprime(n*2^k-1), return(k))) \\ Eric Chen, Jun 01 2015
-
Python
from sympy import isprime def a(n): m = 0 while not isprime(n*2**m - 1): m += 1 return m print([a(n) for n in range(1, 88)]) # Michael S. Branicky, Feb 01 2021