A040101 Primes p such that x^4 = 3 has a solution mod p.
2, 3, 11, 13, 23, 47, 59, 71, 83, 107, 109, 131, 167, 179, 181, 191, 193, 227, 229, 239, 251, 263, 277, 311, 313, 347, 359, 383, 419, 421, 431, 433, 443, 467, 479, 491, 503, 541, 563, 577, 587, 599, 601, 647, 659
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
[p: p in PrimesUpTo(800) | exists(t){x : x in ResidueClassRing(p) | x^4 eq 3}]; // Vincenzo Librandi, Sep 11 2012
-
Mathematica
ok [p_]:=Reduce[Mod[x^4- 3, p] == 0, x, Integers] =!= False; Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 11 2012 *)
-
PARI
isA040101(p) = isprime(p) && (p==2 || p==3 || p%12==11 || (p%4==1 && Mod(3, p)^((p-1)/4) == 1)) \\ Jianing Song, Jun 22 2025
Comments