A040105 Primes p such that x^4 = 5 has a solution mod p.
2, 5, 11, 19, 31, 59, 71, 79, 101, 109, 131, 139, 149, 151, 179, 181, 191, 199, 211, 239, 251, 269, 271, 311, 331, 359, 379, 389, 401, 409, 419, 431, 439, 449, 461, 479, 491, 499, 521, 541, 569, 571, 599, 619
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
[p: p in PrimesUpTo(800) | exists(t){x : x in ResidueClassRing(p) | x^4 eq 5}]; // Vincenzo Librandi, Sep 11 2012
-
Mathematica
ok [p_]:=Reduce[Mod[x^4- 5, p] == 0, x, Integers] =!= False; Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 11 2012 *)
-
PARI
isA040105(p) = isprime(p) && (p==2 || p==5 || p%20==11 || p%20==19 || (p%4==1 && Mod(5,p)^((p-1)/4) == 1)) \\ Jianing Song, Jun 20 2025
Comments