cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A122869 Primes p that divide Lucas((p-1)/2), where Lucas is A000032.

Original entry on oeis.org

11, 19, 31, 59, 71, 79, 131, 139, 151, 179, 191, 199, 211, 239, 251, 271, 311, 331, 359, 379, 419, 431, 439, 479, 491, 499, 571, 599, 619, 631, 659, 691, 719, 739, 751, 811, 839, 859, 911, 919, 971, 991, 1019, 1031, 1039, 1051, 1091, 1151, 1171, 1231, 1259
Offset: 1

Views

Author

Alexander Adamchuk, Sep 16 2006

Keywords

Comments

Final digit of a(n) is 1 or 9.
A002145 is the union of this sequence and A122870, Primes p that divide Lucas((p+1)/2).
Conjecture: This sequence is just the primes congruent to 11 or 19 mod 20. - Charles R Greathouse IV, May 25 2011 [The conjecture is correct. - Jianing Song, Jun 20 2025]
Note that F(p-1) = F((p-1)/2)*Lucas((p-1)/2), where F = A000045. Since gcd(F(n),Lucas(n)) = 1 or 2 (because Lucas(n)^2 - 5*F(n)^2 = 4*(-1)^n), this sequence lists primes p such that p divides F(p-1) but does not divides F((p-1)/2). By Propositions 1.1 and 1.2 (the k = 3 case) of my link below, this is primes p == 11, 19 (mod 20). - Jianing Song, Jun 20 2025

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000]],IntegerQ[(Fibonacci[(#1-1)/2-1]+Fibonacci[(#1-1)/2+1])/#1]&]
  • PARI
    lista(kmax) = {my(lucas1 = 1, lucas2 = 3, lucas3, p); for(k = 3, kmax, lucas3 = lucas1 + lucas2; p = 2*k + 1; if(isprime(p) && !(lucas3 % p), print1(p, ", ")); lucas1 = lucas2; lucas2 = lucas3);} \\ Amiram Eldar, Jun 06 2024

A385192 Primes p such that multiplicative order of 5 modulo p is odd.

Original entry on oeis.org

2, 11, 19, 31, 59, 71, 79, 101, 109, 131, 139, 149, 151, 179, 181, 191, 199, 211, 239, 251, 269, 271, 311, 331, 359, 379, 389, 401, 409, 419, 431, 439, 461, 479, 491, 499, 541, 569, 571, 599, 619, 631, 659, 691, 719, 739, 751, 811, 829, 839, 859, 911, 919, 941, 971, 991
Offset: 1

Views

Author

Jianing Song, Jun 20 2025

Keywords

Comments

The multiplicative order of 5 modulo a(n) is A385193(n).
Contained in primes congruent to 1 or 4 modulo 5 (primes p such that 5 is a quadratic residue modulo p, A045468), and contains primes congruent to 11 or 19 modulo 20 (A122869).
Conjecture: this sequence has density 1/3 among the primes.

Examples

			101 is a term since 5^25 == 1 (mod 101).
		

Crossrefs

Subsequence of A040105, which (without the terms 2 and 5) is itself a subsequence of A045468.
Contains A122869 as a proper subsequence.
Cf. A385193 (the actual multiplicative orders).
Cf. other bases: A014663 (base 2), A385220 (base 3), A385221 (base 4), this sequence (base 5), A163183 (base -2), A385223 (base -3), A385224 (base -4), A385225 (base -5).

Programs

  • Mathematica
    Select[Prime[Range[200]], OddQ[MultiplicativeOrder[5, #]] &] (* Paolo Xausa, Jun 28 2025 *)
  • PARI
    isA385192(p) = isprime(p) && (p!=5) && znorder(Mod(5,p))%2

A040106 Primes p such that x^4 = 5 has no solution mod p.

Original entry on oeis.org

3, 7, 13, 17, 23, 29, 37, 41, 43, 47, 53, 61, 67, 73, 83, 89, 97, 103, 107, 113, 127, 137, 157, 163, 167, 173, 193, 197, 223, 227, 229, 233, 241, 257, 263, 277, 281, 283, 293, 307, 313, 317, 337, 347, 349, 353, 367
Offset: 1

Views

Author

Keywords

Comments

Complement of A040105 relative to A000040. - Vincenzo Librandi, Sep 17 2012

Programs

  • Magma
    [p: p in PrimesUpTo(500) | not exists{x : x in ResidueClassRing(p) | x^4 eq 5} ]; // Vincenzo Librandi, Sep 17 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^4 - 5, p] == 0, x, Integers] == False;Select[Prime[Range[100]], ok] (* Vincenzo Librandi, Sep 17 2012  *)
Showing 1-3 of 3 results.