cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A122869 Primes p that divide Lucas((p-1)/2), where Lucas is A000032.

Original entry on oeis.org

11, 19, 31, 59, 71, 79, 131, 139, 151, 179, 191, 199, 211, 239, 251, 271, 311, 331, 359, 379, 419, 431, 439, 479, 491, 499, 571, 599, 619, 631, 659, 691, 719, 739, 751, 811, 839, 859, 911, 919, 971, 991, 1019, 1031, 1039, 1051, 1091, 1151, 1171, 1231, 1259
Offset: 1

Views

Author

Alexander Adamchuk, Sep 16 2006

Keywords

Comments

Final digit of a(n) is 1 or 9.
A002145 is the union of this sequence and A122870, Primes p that divide Lucas((p+1)/2).
Conjecture: This sequence is just the primes congruent to 11 or 19 mod 20. - Charles R Greathouse IV, May 25 2011 [The conjecture is correct. - Jianing Song, Jun 20 2025]
Note that F(p-1) = F((p-1)/2)*Lucas((p-1)/2), where F = A000045. Since gcd(F(n),Lucas(n)) = 1 or 2 (because Lucas(n)^2 - 5*F(n)^2 = 4*(-1)^n), this sequence lists primes p such that p divides F(p-1) but does not divides F((p-1)/2). By Propositions 1.1 and 1.2 (the k = 3 case) of my link below, this is primes p == 11, 19 (mod 20). - Jianing Song, Jun 20 2025

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000]],IntegerQ[(Fibonacci[(#1-1)/2-1]+Fibonacci[(#1-1)/2+1])/#1]&]
  • PARI
    lista(kmax) = {my(lucas1 = 1, lucas2 = 3, lucas3, p); for(k = 3, kmax, lucas3 = lucas1 + lucas2; p = 2*k + 1; if(isprime(p) && !(lucas3 % p), print1(p, ", ")); lucas1 = lucas2; lucas2 = lucas3);} \\ Amiram Eldar, Jun 06 2024

A040148 Primes p such that x^4 = 20 has no solution mod p.

Original entry on oeis.org

3, 7, 13, 17, 23, 37, 41, 43, 47, 53, 67, 73, 83, 89, 97, 101, 103, 107, 109, 113, 127, 137, 149, 157, 163, 167, 173, 181, 193, 197, 223, 227, 233, 241, 257, 263, 269, 277, 281, 283, 293, 307, 313, 317, 337, 347
Offset: 1

Views

Author

Keywords

Comments

Complement of A040147 relative to A000040. - Vincenzo Librandi, Sep 18 2012

Programs

  • Magma
    [p: p in PrimesUpTo(500) | not exists{x : x in ResidueClassRing(p) | x^4 eq 20} ]; // Vincenzo Librandi, Sep 18 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^4 - 20, p] == 0, x, Integers] == False; Select[Prime[Range[100]], ok] (* Vincenzo Librandi, Sep 18 2012  *)
Showing 1-2 of 2 results.