A040160 Primes p such that x^5 = 2 has no solution mod p.
11, 31, 41, 61, 71, 101, 131, 181, 191, 211, 271, 281, 311, 331, 401, 421, 461, 491, 521, 541, 601, 631, 661, 691, 701, 751, 761, 811, 821, 881, 941, 991, 1021, 1031, 1051, 1061, 1091, 1151, 1171, 1201, 1231, 1291, 1301, 1321, 1361, 1381, 1451, 1471, 1481, 1511, 1531, 1571
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(1300) | forall{x: x in ResidueClassRing(p) | x^5 ne 2}]; // Bruno Berselli, Sep 12 2012
-
Magma
[p: p in PrimesUpTo(1500) | not exists{x : x in ResidueClassRing(p) | x^5 eq 2} ]; // Vincenzo Librandi, Sep 18 2012
-
Mathematica
ok[p_]:= Reduce[Mod[x^5 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[300]], ok] (* Vincenzo Librandi, Sep 18 2012 *)
-
PARI
forprime(p=2,10^3,if(#polrootsmod(x^5-2,p)==0,print1(p,", "))) \\ Joerg Arndt, Jul 16 2015
Comments