cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A040160 Primes p such that x^5 = 2 has no solution mod p.

Original entry on oeis.org

11, 31, 41, 61, 71, 101, 131, 181, 191, 211, 271, 281, 311, 331, 401, 421, 461, 491, 521, 541, 601, 631, 661, 691, 701, 751, 761, 811, 821, 881, 941, 991, 1021, 1031, 1051, 1061, 1091, 1151, 1171, 1201, 1231, 1291, 1301, 1321, 1361, 1381, 1451, 1471, 1481, 1511, 1531, 1571
Offset: 1

Views

Author

Keywords

Comments

Complement of A040159 relative to A000040. - Vincenzo Librandi, Sep 18 2012

Programs

  • Magma
    [p: p in PrimesUpTo(1300) | forall{x: x in ResidueClassRing(p) | x^5 ne 2}]; // Bruno Berselli, Sep 12 2012
    
  • Magma
    [p: p in PrimesUpTo(1500) | not exists{x : x in ResidueClassRing(p) | x^5 eq 2} ]; // Vincenzo Librandi, Sep 18 2012
    
  • Mathematica
    ok[p_]:= Reduce[Mod[x^5 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[300]], ok] (* Vincenzo Librandi, Sep 18 2012  *)
  • PARI
    forprime(p=2,10^3,if(#polrootsmod(x^5-2,p)==0,print1(p,", "))) \\ Joerg Arndt, Jul 16 2015