cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A041449 Denominators of continued fraction convergents to sqrt(240).

Original entry on oeis.org

1, 2, 61, 124, 3781, 7686, 234361, 476408, 14526601, 29529610, 900414901, 1830359412, 55811197261, 113452753934, 3459393815281, 7032240384496, 214426605350161, 435885451084818, 13290990137894701, 27017865726874220, 823826961944121301, 1674671789615116822
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,2,61,124]; [n le 4 select I[n] else 62*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 18 2013
  • Mathematica
    Denominator[Convergents[Sqrt[240], 30]] (* Vincenzo Librandi, Dec 18 2013 *)
    a0[n_] := Sqrt[2+(31-8*Sqrt[15])^(1+2*n)+(31+8*Sqrt[15])^(1+2*n)]/8 // Simplify
    a1[n_] := 2*Sum[a0[i], {i, 0, n}]
    Flatten[MapIndexed[{a0[#-1],a1[#-1]}&,Range[11]]] (* Gerry Martens, Jul 10 2015 *)

Formula

G.f.: -(x^2-2*x-1) / ((x^2-8*x+1)*(x^2+8*x+1)). - Colin Barker, Nov 17 2013
a(n) = 62*a(n-2) - a(n-4) for n>3. - Vincenzo Librandi, Dec 18 2013
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n-1),a1(n-1)] for n>0:
a0(n) = sqrt(2+(31-8*sqrt(15))^(2*n+1)+(31+8*sqrt(15))^(2*n+1))/8.
a1(n) = 2*sum(i=0,n,a0(i)). (End)

Extensions

More terms from Colin Barker, Nov 17 2013

A041448 Numerators of continued fraction convergents to sqrt(240).

Original entry on oeis.org

15, 31, 945, 1921, 58575, 119071, 3630705, 7380481, 225045135, 457470751, 13949167665, 28355806081, 864623350095, 1757602506271, 53592698538225, 108942999582721, 3321882686019855, 6752708371622431, 205903133834692785, 418558976041008001, 12762672415064932815
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[240], 30]] (* or *) CoefficientList[Series[(15 + 31 x + 945 x^2 + 1921 x^3 + 945 x^4 - 31 x^5 + 15 x^6 - x^7)/(1 - 3842 x^4 + x^8), {x, 0, 30}], x] (* Vincenzo Librandi, Nov 02 2013 *)
    a0[n_] := (-15-4*Sqrt[15]+(-15+4*Sqrt[15])*(31+8*Sqrt[15])^(2*n))/(2*(31+8*Sqrt[15])^n) // Simplify
    a1[n_] := (1+(31+8*Sqrt[15])^(2*n))/(2*(31+8*Sqrt[15])^n) // Simplify
    Flatten[MapIndexed[{a0[#], a1[#]}&,Range[10]]] (* Gerry Martens, Jul 10 2015 *)

Formula

G.f.: -(x+1)*(x^2-16*x-15) / ((x^2-8*x+1)*(x^2+8*x+1)). - Vincenzo Librandi, Nov 02 2013, simplified by Colin Barker, Dec 28 2013
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)]:
a0(n) = ((-15-4*sqrt(15))/(31+8*sqrt(15))^n+(-15+4*sqrt(15))*(31+8*sqrt(15))^n)/2.
a1(n) = (1/(31+8*sqrt(15))^n+(31+8*sqrt(15))^n)/2. (End)

Extensions

More terms from Colin Barker, Dec 28 2013
Showing 1-2 of 2 results.