cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A302329 a(0)=1, a(1)=61; for n>1, a(n) = 62*a(n-1) - a(n-2).

Original entry on oeis.org

1, 61, 3781, 234361, 14526601, 900414901, 55811197261, 3459393815281, 214426605350161, 13290990137894701, 823826961944121301, 51063980650397625961, 3165142973362708688281, 196187800367837541047461, 12160478479832564836254301, 753753477949251182306719201
Offset: 0

Views

Author

Bruno Berselli, Apr 05 2018

Keywords

Comments

Centered hexagonal numbers (A003215) with index in A145607. Example: 35 is a member of A145607, therefore A003215(35) = 3781 is a term of this sequence.
Also, centered 10-gonal numbers (A062786) with index in A182432. Example: 28 is a member of A182432 and A062786(28) = 3781.
a(n) is a solution to the Pell equation (4*a(n))^2 - 15*b(n)^2 = 1. The corresponding b(n) are A258684(n). - Klaus Purath, Jul 19 2025

Crossrefs

Fourth row of the array A188646.
First bisection of A041449, A042859.
Similar sequences of the type cosh((2*n+1)*arccosh(k))/k: A000012 (k=1), A001570 (k=2), A077420 (k=3), this sequence (k=4), A302330 (k=5), A302331 (k=6), A302332 (k=7), A253880 (k=8).

Programs

  • Mathematica
    LinearRecurrence[{62, -1}, {1, 61}, 20]
  • PARI
    x='x+O('x^99); Vec((1-x)/(1-62*x+x^2)) \\ Altug Alkan, Apr 06 2018

Formula

G.f.: (1 - x)/(1 - 62*x + x^2).
a(n) = a(-1-n).
a(n) = cosh((2*n + 1)*arccosh(4))/4.
a(n) = ((4 + sqrt(15))^(2*n + 1) + 1/(4 + sqrt(15))^(2*n + 1))/8.
a(n) = (1/4)*T(2*n+1, 4), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Jul 08 2022
E.g.f.: exp(31*x)*(4*cosh(8*sqrt(15)*x) + sqrt(15)*sinh(8*sqrt(15)*x))/4. - Stefano Spezia, Jul 25 2025

A041448 Numerators of continued fraction convergents to sqrt(240).

Original entry on oeis.org

15, 31, 945, 1921, 58575, 119071, 3630705, 7380481, 225045135, 457470751, 13949167665, 28355806081, 864623350095, 1757602506271, 53592698538225, 108942999582721, 3321882686019855, 6752708371622431, 205903133834692785, 418558976041008001, 12762672415064932815
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[240], 30]] (* or *) CoefficientList[Series[(15 + 31 x + 945 x^2 + 1921 x^3 + 945 x^4 - 31 x^5 + 15 x^6 - x^7)/(1 - 3842 x^4 + x^8), {x, 0, 30}], x] (* Vincenzo Librandi, Nov 02 2013 *)
    a0[n_] := (-15-4*Sqrt[15]+(-15+4*Sqrt[15])*(31+8*Sqrt[15])^(2*n))/(2*(31+8*Sqrt[15])^n) // Simplify
    a1[n_] := (1+(31+8*Sqrt[15])^(2*n))/(2*(31+8*Sqrt[15])^n) // Simplify
    Flatten[MapIndexed[{a0[#], a1[#]}&,Range[10]]] (* Gerry Martens, Jul 10 2015 *)

Formula

G.f.: -(x+1)*(x^2-16*x-15) / ((x^2-8*x+1)*(x^2+8*x+1)). - Vincenzo Librandi, Nov 02 2013, simplified by Colin Barker, Dec 28 2013
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)]:
a0(n) = ((-15-4*sqrt(15))/(31+8*sqrt(15))^n+(-15+4*sqrt(15))*(31+8*sqrt(15))^n)/2.
a1(n) = (1/(31+8*sqrt(15))^n+(31+8*sqrt(15))^n)/2. (End)

Extensions

More terms from Colin Barker, Dec 28 2013
Showing 1-2 of 2 results.