A041007 Denominators of continued fraction convergents to sqrt(6).
1, 2, 9, 20, 89, 198, 881, 1960, 8721, 19402, 86329, 192060, 854569, 1901198, 8459361, 18819920, 83739041, 186298002, 828931049, 1844160100, 8205571449, 18255302998, 81226783441, 180708869880
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,10,0,-1).
Programs
-
Mathematica
Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[6],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
Formula
G.f.: (1+2*x-x^2)/(1-10*x^2+x^4). - Colin Barker, Dec 31 2011
From Rogério Serôdio, Apr 01 2018: (Start)
Recurrence formula: a(n) = (3 + (-1)^n)*a(n-1) + a(n-2), a(0) = 1, a(1) = 2.
Some properties:
(1) a(n)^2 - a(n-2)^2 = (3+(-1)^n)*a(2*n-1), for n > 1;
(2) a(2*n+1) = a(n)*(a(n+1) + a(n-1)), for n > 0;
(3) a(2*n) = A142239(2*n), for n >= 0;
(4) a(2*n+1) = A041007(2*n+1)/2, for n >= 0;
(5) a(2*n-1)*A142239(2*n+1) = a(n)^2 - 1, for n > 0;
a(n) = ((2 + sqrt(6))^(n+1) - (2 - sqrt(6))^(n+1))/(sqrt(6) * 2^(ceiling(n/2) + 1)). - Robert FERREOL, Oct 14 2024
Comments