cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041015 Denominators of continued fraction convergents to sqrt(11).

Original entry on oeis.org

1, 3, 19, 60, 379, 1197, 7561, 23880, 150841, 476403, 3009259, 9504180, 60034339, 189607197, 1197677521, 3782639760, 23893516081, 75463188003, 476672644099, 1505481120300, 9509559365899, 30034159217997
Offset: 0

Views

Author

Keywords

Comments

Sqrt(11) = 3 + continued fraction [3, 6, 3, 6, 3, 6, ...] = 6/2 + 6/19 + 6/(19*379) + 6/(379*7561) + ... - Gary W. Adamson, Dec 21 2007
Let X = the 2 X 2 matrix [1, 6; 3, 19], then X^n * [1, 0] = [a(n+1), a(n+2)]; e.g., X^3 * [1, 0] = [379, 1197] = [a(4), a(5)]. - Gary W. Adamson, Dec 21 2007

Crossrefs

Programs

  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[11],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    a0[n_] := (11+3*Sqrt[11]+(11-3*Sqrt[11])*(10+3*Sqrt[11])^(2*n))/(22*(10+3*Sqrt[11])^n) // Simplify
    a1[n_] := 3*Sum[a0[i], {i, 1, n}]
    Flatten[MapIndexed[{a0[#], a1[#]}&,Range[11]]] (* Gerry Martens, Jul 10 2015 *)

Formula

G.f.: (1+3*x-x^2)/(1-20*x^2+x^4). - Colin Barker, Dec 31 2011
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)]:
a0(n) = ((11+3*sqrt(11))/(10+3*sqrt(11))^n + (11-3*sqrt(11))*(10+3*sqrt(11))^n)/22.
a1(n) = 3*Sum_{i=1..n} a0(i). (End)