A041015 Denominators of continued fraction convergents to sqrt(11).
1, 3, 19, 60, 379, 1197, 7561, 23880, 150841, 476403, 3009259, 9504180, 60034339, 189607197, 1197677521, 3782639760, 23893516081, 75463188003, 476672644099, 1505481120300, 9509559365899, 30034159217997
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (0,20,0,-1).
Programs
-
Mathematica
Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[11],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *) a0[n_] := (11+3*Sqrt[11]+(11-3*Sqrt[11])*(10+3*Sqrt[11])^(2*n))/(22*(10+3*Sqrt[11])^n) // Simplify a1[n_] := 3*Sum[a0[i], {i, 1, n}] Flatten[MapIndexed[{a0[#], a1[#]}&,Range[11]]] (* Gerry Martens, Jul 10 2015 *)
Formula
G.f.: (1+3*x-x^2)/(1-20*x^2+x^4). - Colin Barker, Dec 31 2011
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)]:
a0(n) = ((11+3*sqrt(11))/(10+3*sqrt(11))^n + (11-3*sqrt(11))*(10+3*sqrt(11))^n)/22.
a1(n) = 3*Sum_{i=1..n} a0(i). (End)
Comments