A041018 Numerators of continued fraction convergents to sqrt(13).
3, 4, 7, 11, 18, 119, 137, 256, 393, 649, 4287, 4936, 9223, 14159, 23382, 154451, 177833, 332284, 510117, 842401, 5564523, 6406924, 11971447, 18378371, 30349818, 200477279, 230827097, 431304376, 662131473
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,36,0,0,0,0,1).
Crossrefs
Programs
-
Maple
a[0]:=3: a[-1]:=1: b(0):=6: b(1):=1; b(2):=1: b(3):=1: b(4):=1: for n from 1 to 100 do k:=n mod 5: a[n]:=b(k)*a[n-1]+a[n-2]: printf("%12d", a[n]): end do: # Paul Weisenhorn, Aug 17 2018
-
Mathematica
Numerator[Convergents[Sqrt[13], 30]] (* Vincenzo Librandi, Oct 27 2013 *) CoefficientList[Series[(3 + 4*x + 7*x^2 + 11*x^3 + 18*x^4 + 11*x^5 - 7*x^6 + 4*x^7 - 3*x^8 + x^9)/(1 - 36*x^5 - x^10),{x,0,50}],x] (* Stefano Spezia, Aug 31 2018 *)
Formula
From Johannes W. Meijer, Jun 12 2010: (Start)
a(5*n) = A006497(3*n+1),
a(5*n+3) = A006497(3*n+2),
a(5*n+4) = A006497(3*n+3)/2.
(End)
G.f.: (3 + 4*x + 7*x^2 + 11*x^3 + 18*x^4 + 11*x^5 - 7*x^6 + 4*x^7 - 3*x^8 + x^9)/(1 - 36*x^5 - x^10). - Peter J. C. Moses, Jul 29 2013
a(n) = A010122(n)*a(n-1)+a(n-2) with a(0)=3, a(-1)=1. - Paul Weisenhorn, Aug 19 2018