cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041031 Denominators of continued fraction convergents to sqrt(20).

Original entry on oeis.org

1, 2, 17, 36, 305, 646, 5473, 11592, 98209, 208010, 1762289, 3732588, 31622993, 66978574, 567451585, 1201881744, 10182505537, 21566892818, 182717648081, 387002188980, 3278735159921, 6944472508822
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010476, A040015, A041030 (numerators).

Programs

  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[20],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 17 2011 *)
    a0[n_] := ((5+2*Sqrt[5])/(9+4*Sqrt[5])^n+(5-2*Sqrt[5])*(9+4*Sqrt[5])^n)/10 //Simplify
    a1[n_] := (-1/(9+4*Sqrt[5])^n+(9+4*Sqrt[5])^n)/(4*Sqrt[5]) //Simplify
    Flatten[MapIndexed[{a0[#], a1[#]} &,Range[20]]] (* Gerry Martens, Jul 11 2015 *)

Formula

G.f.: (1+2*x-x^2)/(1-18*x^2+x^4). - Colin Barker, Jan 01 2012
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = ((5+2*sqrt(5))/(9+4*sqrt(5))^n+(5-2*sqrt(5))*(9+4*sqrt(5))^n)/10.
a1(n) = (-1/(9+4*sqrt(5))^n+(9+4*sqrt(5))^n)/(4*sqrt(5)). (End)