A041031 Denominators of continued fraction convergents to sqrt(20).
1, 2, 17, 36, 305, 646, 5473, 11592, 98209, 208010, 1762289, 3732588, 31622993, 66978574, 567451585, 1201881744, 10182505537, 21566892818, 182717648081, 387002188980, 3278735159921, 6944472508822
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (0,18,0,-1).
Programs
-
Mathematica
Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[20],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 17 2011 *) a0[n_] := ((5+2*Sqrt[5])/(9+4*Sqrt[5])^n+(5-2*Sqrt[5])*(9+4*Sqrt[5])^n)/10 //Simplify a1[n_] := (-1/(9+4*Sqrt[5])^n+(9+4*Sqrt[5])^n)/(4*Sqrt[5]) //Simplify Flatten[MapIndexed[{a0[#], a1[#]} &,Range[20]]] (* Gerry Martens, Jul 11 2015 *)
Formula
G.f.: (1+2*x-x^2)/(1-18*x^2+x^4). - Colin Barker, Jan 01 2012
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = ((5+2*sqrt(5))/(9+4*sqrt(5))^n+(5-2*sqrt(5))*(9+4*sqrt(5))^n)/10.
a1(n) = (-1/(9+4*sqrt(5))^n+(9+4*sqrt(5))^n)/(4*sqrt(5)). (End)