cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041127 Denominators of continued fraction convergents to sqrt(72).

Original entry on oeis.org

1, 2, 33, 68, 1121, 2310, 38081, 78472, 1293633, 2665738, 43945441, 90556620, 1492851361, 3076259342, 50713000833, 104502261008, 1722749176961, 3550000614930, 58522759015841, 120595518646612, 1988051057361633, 4096697633369878, 67535213191279681
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1, 2, 33, 68]; [n le 4 select I[n] else 34*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 11 2013
  • Mathematica
    Denominator/@Convergents[Sqrt[72], 50] (* Vladimir Joseph Stephan Orlovsky, Jul 05 2011 *)
    CoefficientList[Series[(1 + 2 x - x^2)/(x^4 - 34 x^2 + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 11 2013 *)
    a0[n_] := ((3+2*Sqrt[2])/(17+12*Sqrt[2])^n+(3-2*Sqrt[2])*(17+ 12*Sqrt[2])^n)/6 // Simplify
    a1[n_] := (-1/(17+12*Sqrt[2])^n+(17+12*Sqrt[2])^n)/(12*Sqrt[2]) // FullSimplify
    Flatten[MapIndexed[{a0[#],a1[#]}&,Range[20]]] (* Gerry Martens, Jul 10 2015 *)
  • PARI
    a(n)=my(v=contfrac(sqrt(72),n),s=v[n]);forstep(k=n-1,1,-1,s=v[k]+1/s);denominator(s) \\ Charles R Greathouse IV, Jul 05 2011
    

Formula

G.f.: -(x^2-2*x-1) / ((x^2-6*x+1)*(x^2+6*x+1)). - Colin Barker, Nov 13 2013
a(n) = 34*a(n-2) - a(n-4). - Vincenzo Librandi, Dec 11 2013
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = ((3+2*sqrt(2))/(17+12*sqrt(2))^n+(3-2*sqrt(2))*(17+12*sqrt(2))^n)/6.
a1(n) = (-1/(17+12*sqrt(2))^n+(17+12*sqrt(2))^n)/(12*sqrt(2)). (End)