cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041179 Denominators of continued fraction convergents to sqrt(99).

Original entry on oeis.org

1, 1, 19, 20, 379, 399, 7561, 7960, 150841, 158801, 3009259, 3168060, 60034339, 63202399, 1197677521, 1260879920, 23893516081, 25154396001, 476672644099, 501827040100, 9509559365899, 10011386405999, 189714514673881, 199725901079880, 3784780734111721
Offset: 0

Views

Author

Keywords

Comments

The following remarks assume an offset of 1. This is the sequence of Lehmer numbers U_n(sqrt(R),Q) for the parameters R = 18 and Q = -1; it is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. Consequently, this is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, May 28 2014

Crossrefs

Programs

  • Magma
    I:=[1, 1, 19, 20]; [n le 4 select I[n] else 20*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 12 2013
  • Mathematica
    Denominator[Convergents[Sqrt[99], 30]] (* Vincenzo Librandi, Dec 12 2013 *)

Formula

G.f.: -(x^2-x-1) / (x^4-20*x^2+1). - Colin Barker, Nov 14 2013
a(n) = 20*a(n-2) - a(n-4). - Vincenzo Librandi, Dec 12 2013
From Peter Bala, May 28 2014: (Start)
The following remarks assume an offset of 1.
Let alpha = ( sqrt(18) + sqrt(22) )/2 and beta = ( sqrt(18) - sqrt(22) )/2 be the roots of the equation x^2 - sqrt(18)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even.
a(n) = Product_{k = 1..floor((n-1)/2)} ( 18 + 4*cos^2(k*Pi/n) ).
Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 1, a(2*n) = a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 18*a(2*n) + a(2*n - 1). (End)

Extensions

More terms from Colin Barker, Nov 14 2013