A041226 Numerators of continued fraction convergents to sqrt(125).
11, 56, 67, 123, 682, 15127, 76317, 91444, 167761, 930249, 20633239, 104096444, 124729683, 228826127, 1268860318, 28143753123, 141987625933, 170131379056, 312119004989, 1730726404001, 38388099893011, 193671225869056, 232059325762067, 425730551631123
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1364,0,0,0,0,1).
Programs
-
Mathematica
Numerator[Convergents[Sqrt[125], 30]] (* Vincenzo Librandi, Oct 31 2013 *)
Formula
From Johannes W. Meijer, Jun 12 2010: (Start)
a(5n) = A001946(3n+1),
a(5n+3) = A001946(3n+2),
a(5n+4) = A001946(3n+3)/2. (End)
G.f.: -(x^9 -11*x^8 +56*x^7 -67*x^6 +123*x^5 +682*x^4 +123*x^3 +67*x^2 +56*x +11) / ((x^2 +4*x -1)*(x^4 -7*x^3 +19*x^2 -3*x +1)*(x^4 +3*x^3 +19*x^2 +7*x +1)). - Colin Barker, Nov 08 2013
Extensions
More terms from Colin Barker, Nov 08 2013
Comments