A041247 Denominators of continued fraction convergents to sqrt(135).
1, 1, 2, 3, 5, 8, 13, 21, 475, 496, 971, 1467, 2438, 3905, 6343, 10248, 231799, 242047, 473846, 715893, 1189739, 1905632, 3095371, 5001003, 113117437, 118118440, 231235877, 349354317, 580590194, 929944511, 1510534705, 2440479216, 55201077457, 57641556673
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,488,0,0,0,0,0,0,0,-1).
Programs
-
Magma
I:=[1,1,2,3,5,8,13,21,475,496,971,1467,2438,3905,6343,10248]; [n le 16 select I[n] else 488*Self(n-8)-Self(n-16): n in [1..40]]; // Vincenzo Librandi, Dec 13 2013
-
Mathematica
Denominator[Convergents[Sqrt[135], 30]] (* Vincenzo Librandi, Dec 13 2013 *) LinearRecurrence[{0,0,0,0,0,0,0,488,0,0,0,0,0,0,0,-1},{1,1,2,3,5,8,13,21,475,496,971,1467,2438,3905,6343,10248},40] (* Harvey P. Dale, Aug 01 2019 *)
Formula
G.f.: -(x^2-x-1)*(x^4+3*x^2+1)*(x^8+7*x^4+1) / (x^16-488*x^8+1). - Colin Barker, Nov 14 2013
a(n) = 488*a(n-8) - a(n-16). - Vincenzo Librandi, Dec 13 2013
Extensions
More terms from Colin Barker, Nov 14 2013